电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【志鸿优化设计】2016届高考数学一轮复习 第八章 立体几何考点规范练39 文VIP免费

【志鸿优化设计】2016届高考数学一轮复习 第八章 立体几何考点规范练39 文_第1页
1/8
【志鸿优化设计】2016届高考数学一轮复习 第八章 立体几何考点规范练39 文_第2页
2/8
【志鸿优化设计】2016届高考数学一轮复习 第八章 立体几何考点规范练39 文_第3页
3/8
考点规范练39空间点、直线、平面之间的位置关系一、非标准1.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直2.(2014广东,文9)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定3.如图,在正方体ABCD-A1B1C1D1中,过顶点A1与正方体其他顶点的连线与直线BC1成60°角的条数为()A.1B.2C.3D.44.在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线()A.不存在B.有且只有两条C.有且只有三条D.有无数条5.设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是()A.(0,)B.(0,)C.(1,)D.(1,)6.设a,b,c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是.7.如图,正方体的底面与正四面体的底面在同一个平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为.8.如图,在正方体ABCD-A1B1C1D1中,1(1)求A1C1与B1C所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.9.(2014课标全国Ⅱ,文18)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=,三棱锥P-ABD的体积V=,求A到平面PBC的距离.10.过正方体ABCD-A1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作()A.1条B.2条C.3条D.4条11.如图,在底面为正方形、侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()2A.B.C.D.12.如图是某个正方体的侧面展开图,l1,l2是两条侧面的对角线,则在正方体中,l1与l2()A.互相平行B.异面且互相垂直C.异面且夹角为D.相交且夹角为13.如图所示,点A是平面BCD外一点,AD=BC=2,E,F分别是AB,CD的中点,且EF=,则异面直线AD和BC所成的角为.14.(2014陕西,文17)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形.315.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小.##一、非标准1.A解析:如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.2.D解析:如图所示正方体ABCD-A1B1C1D1,取l1为BB1,l2为BC,l3为AD,l4为CC1,则l1∥l4,可知选项A错误;取l1为BB1,l2为BC,l3为AD,l4为C1D1,则l1⊥l4,故B错误,则C也错误,故选D.3.B解析:有2条:A1B和A1C1.4.D解析:(方法一)在EF上任意取一点M,直线A1D1与M确定一个平面(如图1),这个平面与CD有且仅有1个交点N,M取不同的位置就确定不同的平面,从而与CD有不同的交点N,而直线MN与这3条异面直线都有交点.如图所示.故选D.4图1(方法二)在A1D1上任取一点P,过点P与直线EF作一个平面α(如图2),图2因为CD与平面α不平行,所以它们相交,设它们交于点Q,连接PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性,知有无数条直线与三条直线A1D1,EF,CD都相交.5.A解析:此题相当于一个正方形沿着对角线折成一个四面体,长为a的棱长一定大于0且小于.6.0解析: a⊥b,b⊥c,∴a与c可以相交、平行、异面,故①错. a,b异面,b,c异面,则a,c可能异面、相交、平行,故②错.由a,b相交,b,c相交,则a,c可以异面、相交、平行,故③错.同理④错,故真命题的个数为0.7.4解析:取CD的中点为G,由题意知平面EFG与正方体的左、右侧面所在平面重合或平行,从而EF与正方体的左、右侧面所在的平面平行或EF在平面内.所以直线EF与正方体的前、后侧面及上、下底面所在平面相交.故直线EF与正方体的六个面所在的平面相交的平面个数为4.8.解:(1)如图,连接AC,AB1,由ABCD-A1B1C1D1是正方体,知四边形AA1C1C为平行四边形,所以AC∥A1C1,从而B1C与AC所成的角就是A1C1与B1C所成的角.在△AB1C中,由AB1=A...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【志鸿优化设计】2016届高考数学一轮复习 第八章 立体几何考点规范练39 文

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部