电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【名师一号】高三数学二轮复习 2-1-19特例检验型、逆向思维型、综合型同步练习 理 人教版VIP免费

【名师一号】高三数学二轮复习 2-1-19特例检验型、逆向思维型、综合型同步练习 理 人教版_第1页
1/7
【名师一号】高三数学二轮复习 2-1-19特例检验型、逆向思维型、综合型同步练习 理 人教版_第2页
2/7
【名师一号】高三数学二轮复习 2-1-19特例检验型、逆向思维型、综合型同步练习 理 人教版_第3页
3/7
高考专题训练十九特例检验型、逆向思维型、综合型班级_______姓名_______时间:45分钟分值:100分总得分_______1.(全国高考题)函数f(x)=Msin(ωx+φ)(ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则g(x)=Mcos(ωx+φ)在[a,b]上()A.是增函数B.是减函数C.可以取得最大值MD.可以取得最小值-M解析:此题单纯从“数”的角度去分析,具有相当的难度.若在同一直角坐标系中作出函数y=Msin(ωx+φ)和y=Mcos(ωx+φ)的大致图形(如下图),再观察在区间[a,b]上函数y=Mcos(ωx+φ)图象的特征,则易知正确答案是C.答案:C2.(全国高考题)如果直线l将圆x2+y2-2x-4y=0平分,且不通过第四象限,那么l的斜率的取值范围是()A.[0,2]B.[0,1]C.D.解析:由题设,直线l平分圆,显然直线l应过圆心M(1,2).设过M的直线l的斜率为k,当k=0时,l不过第四象限,当l过原点即k=2时,l亦不过第四象限,由下图不难看出,0≤k≤2时均符合题意,故选A.这是“以形助数”.答案:A3.(全国高考题)定义在(-∞,+∞)上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b),1②f(b)-f(-a)g(b)-g(-a),④f(a)-f(-b)g(a)-g(-b),f(a)-f(-b)=f(a)+f(b)=g(a)+g(b)>g(b)-g(-a).故选C.答案:C4.如果函数y=sin2x+acos2x的图象关于直线x=-对称,则实数a的值为()A.B.-C.1D.-1分析:函数f(x)在x=-时取得最值;或考虑有f=f对一切x∈R恒成立.解析:解法一:设f(x)=sin2x+acos2x,因为函数的图象关于直线x=-对称,所以f=f对一切实数x都成立,即sin2+acos2=sin2+acos2即sin+sin=a,∴2sin2x·cos=-2asin2x·sin,即(a+1)·sin2x=0对一切实数x恒成立,而sin2x不能恒为0,∴a+1=0,即a=-1,故选D.解法二: f(x)=sin2x+acos2x关于直线x=-对称.2∴有f=f对一切x∈R恒成立.特别,对于x=应该成立.将x=代入上式,得f(0)=f,∴sin0+acos0=sin+acos∴0+a=-1+a×0.∴a=-1.故选D.解法三:y=sin2x+acos2x=sin(2x+φ),其中角φ的终边经过点(1,a).其图象的对称轴方程为2x+φ=kπ+(k∈Z),即x=+-(k∈Z).令+-=-(k∈Z).得φ=kπ+(k∈Z).但角φ的终边经过点(1,a),故k为奇数,角φ的终边与-角的终边相同,∴a=-1.故选D.解法四:y=sin2x+acos2x=sin(2x+φ),其中角φ满足tanφ=a.因为f(x)的对称轴为y=-,∴当x=-时函数y=f(x)有最大值或最小值,所以=f或-=f,即=sin+acos,或-=sin+acos.解之得a=-1.故选D.答案:D评析:本题给出了四种不同的解法,充分利用函数图象的对称性的特征来解题.解法一是运用了方程思想或恒等式思想求解.解法二是利用了数形结合的思想求解,抓住f(m+x)=f(m-x)的图象关于直线x=m对称的性质,取特殊值来求出待定系数a的值.解法三利用函数y=Asin(ωx+φ)的对称轴是方程ωx+φ=kπ+(k∈Z)的解x=(k∈Z),然后将x=-代入求出相应的φ值,再求a的值.解法四利用对称轴的特殊性质,在此处函数f(x)取最大值或最小值.于是有f=[f(x)]max或f=[f(x)]min.从而转化为解方程问题,体现了方程思想.由此可见,本题体现了丰富的数学思想方法,要从多种解法中悟出其实质东西.5.△ABC的外接圆的圆心为O,两条边上的高的交点为H,OH=m(OA+OB+OC),则实数m的值为()A.B.1C.2D.解析:3当△ABC为等腰直角三角形时,O为AC的中点,AB、BC边上高的交点H与B重合(如图),OA+OB+OC=OB=OH,所以m=1.答案:B6.设f(x)是定义在实数集R上的任意一个增函数,且F(x)=f(x)-f(-x),那么F(x)应为()A.增函数且是奇函数B.增函数且为偶函数C.减函数且是奇函数D.减函数且为偶函数解析:因为f(x)是定义在R上的任意一个...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【名师一号】高三数学二轮复习 2-1-19特例检验型、逆向思维型、综合型同步练习 理 人教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部