1中学数学教学设计案例案例数学教学目标设计示例为了说明数学教学目标设计的步骤和方法,并准确地陈述教学目标,现以“有理数的加法”一节为例,详细地说明教学目标的设计。“有理数的加法”教学目标设计1.掌握有理数加法法则:(1)能准确叙述有理数加法法则,并知道哪哪些问题是属于有理数的加法。(2)能按法则把有理数的加法分解成两个步骤完成:①确定符号;②确定绝对值。(3)熟练、准确地利用加法法则进行计算。2.理解有理数加法法则导出过程及本身所含的数学思想方法。(1)能解释数形结合和分类的思想;(2)能懂得初步的算法思想;(3)学会“观察——归纳”的思维方法。3.初步感受从特殊到一般和从一般到特殊的思维方式;体验用矛盾转化的观点认认识问题;培养严谨、认真、理论联系实际的科学态度和学风。数学教学过程的设计每一节课的教学过程都是由具体的、生动活泼的教学活动组成的。因而,完成了上述方面的教学设计之后,就应着手安排具体的教学活动。具体教学过程的设计,是课堂教学中直接操作的部分,应该按照具体的教学模式来进行富有创造性的设计,同时,应对教学活动进行设计,它主要包括:导入设计、教学情境设计、提问设计、练习设计、讨论设计和小结设计。案例充要条件一、教学目标1.使学生正确理解充分条件、必要条件和充要条件的概念.2.能在判断中正确运用以上概念,并为今后用等价转化思想解决数学问题打下良好的逻辑基础.二、教学过程(一)复习引入师:判断下列命题是真命题还是假命题(用幻灯投影);(1)若,则;(2)若,则;(3)全等三角形的面积相等;(4)对角线互相垂直的四边形是菱形;(5)若,则;(6)若方程有两个不等的实数解,则.(学生口答,教师板书)生:(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.师:对于命题“若,则”,有时是真命题,有时是假命题。你是如何判断其真假的?生:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.师:很好!对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立。换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作.(二)讲授新课(板书充分条件的定义)一般地,如果已知,那么我们就说是成立的充分条件.师:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.生:(口答)(1)“”是“”成立的充分条件;(2)“三角形全等”是“三角形面积相等”成立的充分条件;(3)“方程的有两个不等的实数解”是“.”成立的充分条件.师:从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件.(板书必要条件的定义)师:用“充分条件”和“必要条件”来叙述上述6个命题.(学生口答)(1)因为,所以是的充分条件,是的必要条件;2(2)因为,所以是的必要条件,是的充分;(3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;(4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;(5)因为,所以是的必要条件,是的充分条件;(6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件.师:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.(板书充要条件的定义)(三)巩固新课例1(用投影仪投影)ABA是B的什么条件B是A的什么条件是有理数是实数53、是奇数+是偶数且是4的倍数是6的倍数(学生活动,教师引导学生作出下面回答)①因为有理数一定是实数,但实数不一定是有理数,所以A是B的充分非必要条件,B是A的必要非充分条件;②5一定能推出3,而3不一定推出5,所以A是B的充分非必要条件,B是A的必要非充分条件;③、是奇数,那么+一定是偶数;+是偶数,、不一定都...