•1.8等效线性化法•一阶近似形式为cosax0sinxa20(,)xxfxx220xxx22220022220(,)[2][(,)]2(,)(,)[2(,)]xxxxxxxfxxxxxfxxxxxxxfxx•误差函数表示为22222220002220020011(,)[2(,)]22[2(sin)coscos12(cos,sin)]xxdxxxxfxxdaaafaad•一个周期内平均20(,)xxfxx220xxx22220000022222232000000220002[2(sin)coscos(cos,sin)]122(sin)[2sinsincossincos2sin(cos,sin)]2[2sin(cos,sin)aaafaaadaaaafaapdaafaa20]0d2000(cos,sin)sin2faada22222220002220020011(,)[2(,)]22[2(sin)coscos12(cos,sin)]xxdxxxxfxxdaaafaad222200020222222220000222220002[2(sin)coscos(cos,sin)]12(cos)[2sincoscoscos1cos(cos,sin)]2[cos(cos,sin)]aaafaaadaaaafaadaaafaad0222000(cos,sin)cosfaapda22222220002220020011(,)[2(,)]22[2(sin)coscos12(cos,sin)]xxdxxxxfxxdaaafaad2000(cos,sin)sin2faada222000(cos,sin)cosfaapda20(,)xxfxx220xxx例1053xxkxxcxm220xxx200023500020001(cos,sin)sin211[(sin)cos(cos)(cos)]sin211cos2222faadacakaaadamccadamm0)(153xxkxxcmx)(1),(53xxkxxcmxxf20km2235002234560352511[(sin)cos(cos)(cos)]cos11[coscoscos]111315311354[]()242642248cakaaadamkaaadamkaaakaaamm0)8543(152xaakmxmcx•原方程变为2300sinxxxFt++=&&sineexxkxt++=&&&3fxxcosxa200023300(cossin)sincossin)0efaadaada例2等效线性化方程设解220022300220cosd(cos)cosd34ekfaaaa212242000cossin1cosdcosdnnnnn12242002220020sincos1sindsind1cosdsin2241sin24nnnnn其中则得0sineexxkxFt++=&&&002222034eFFaka将解代入等价线性化方程幅频特性曲线23500()sinxxcxxxFt++++=&&&0sineexxkxFt++=&&&()35fxcxxx=---&cosxa用等价线性化法求如下非自治振动方程的定常解:例3等效线性化方程设解200023355000(cos,sin)sindsincoscossindefaaacaaaca22223355000002240cosdsincoscoscosd3548ekfcaaaaaaa2240035sin48xcxaaxFtæö÷ç++++=÷ç÷çèø&&&则原方程的等价线性方程为:cosxtat01/222224203548Faaac22420arctan3548caa强迫振动的稳态解为:根据线性振动理论振幅和相位角分别为: