问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?赵州桥主桥拱的半径是多少?圆的对称性圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?●O你是用什么方法解决上述问题的?圆是中心对称图形吗?如果是,它的对称中心是什么?你能找到多少条对称轴?你又是用什么方法解决这个问题的?圆的对称性圆是轴对称图形.圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.●O可利用折叠的方法即可解决上述问题.圆也是中心对称图形.它的对称中心就是圆心.用旋转的方法即可解决这个问题.如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)你能发现图中有那些相等的线段和弧?为什么?·OABCDE活动二③AM=BM,垂径定理AB是⊙O的一条弦.你能发现图中有哪些等量关系?与同伴说说你的想法和理由.作直径CD,使CDAB,⊥垂足为M.●O右图是轴对称图形吗?如果是,其对称轴是什么?小明发现图中有:ABCDM└由①CD是直径②CDAB⊥可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.垂径定理如图,小明的理由是:连接OA,OB,●OABCDM└则OA=OB.在RtOAM△和RtOBM△中, OA=OB,OM=OM,∴RtOAMRtOBM.△≌△∴AM=BM.∴点A和点B关于CD对称. ⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,⌒⌒AC和BC重合,⌒⌒AD和BD重合.⌒⌒∴AC=BC,⌒⌒AD=BD.垂径定理三种语言定理:垂直于弦的直径平分弦,并且平分弦所的两条弧.老师提示:垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.想一想P9066●OABCDM└CDAB,⊥如图 CD是直径,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.②CDAB,⊥垂径定理的逆定理AB是⊙O的一条弦,且AM=BM.你能发现图中有哪些等量关系?与同伴说说你的想法和理由.过点M作直径CD.●O右图是轴对称图形吗?如果是,其对称轴是什么?小明发现图中有:CD由①CD是直径③AM=BM可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.●MAB┗平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.你可以写出相应的命题吗?相信自己是最棒的!垂径定理的逆定理如图,在下列五个条件中:只要具备其中两个条件,就可推出其余三个结论.●OABCDM└①CD是直径,③AM=BM,②CDAB,⊥⌒⌒④AC=BC,⌒⌒⑤AD=BD.垂径定理及逆定理●OABCDM└条件结论命题①②③④⑤①③②④⑤①④②③⑤①⑤②③④②③①④⑤②④①③⑤②⑤①③④③④①②⑤③⑤①②④④⑤①②③垂直于弦的直径平分弦,并且平分弦所的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.6.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?证明:过O作OEAB⊥,垂足为E,则AE=BE,CE=DE。∴AE-CE=BE-DE即AC=BD.ACDBOE5.在半径为30㎜的⊙O中,弦AB=36㎜,则O到AB的距离是=,OABP24mm注意:解决有关弦的问题,过圆心作弦的垂线,或作垂直于弦的直径,也是一种常用辅助线的添法.赵州石拱桥解:如图,用表示桥拱,所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与相交于点C.根据垂径定理,D是AB的中点,C是的中点,CD就是拱高.由题设ABABABAB,2.7,4.37CDABABAD21,7.184.3721DCOCOD.2.7R在RtOAD△中,由勾股定理,得,222ODADOA.)2.7(7.18222RR即解得R≈27.9(m).答:赵州石拱桥的桥拱半径约为27.9m.OABCRD37.47.21.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.·OABE练习解:OEAB222AOOEAE2222=3+4=5cmAOOEAE答:⊙O的半径为5cm.活动三118422AEAB在RtAOE...