电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

因式分解讲义(适合0基础的)VIP免费

因式分解讲义(适合0基础的)_第1页
1/7
因式分解讲义(适合0基础的)_第2页
2/7
因式分解讲义(适合0基础的)_第3页
3/7
因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式;完全平方公式;3、分组分解法——适当分组使能提取公因式或运用公式。要灵活运用“补、凑、拆、分”等技巧。4、十字相乘法——【课前回顾】1.下列从左到右的变形,其中是因式分解的是()(A)baba222(B)1112mmm(C)12122xxxx(D)112bababbaa2.把多项式-8a2b3+16a2b2c2-24a3bc3分解因式,应提的公因式是(),(A)-8a2bc(B)2a2b2c3(C)-4abc(D)24a3b3c33.下列因式分解中,正确的是()(A)63632mmmm(B)babaaabba2(C)2222yxyxyx(D)222yxyx4.下列多项式中,可以用平方差公式分解因式的是()(A)42a(B)22a(C)42a(D)42a5.下列各式中,能用完全平方公式分解因式的是().(A)4x2-1(B)4x2+4x-1(C)x2-xy+y2D.x2-x+6.若942mxx是完全平方式,则m的值是()(A)3(B)4(C)12(D)±12经典例题讲解:提公因式法:提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配律例:变式练习:1.多项式6a3b2-3a2b2-21a2b3分解因式时,应提取的公因式是()A.3a2bB.3ab2C.3a3b2D.3a2b22.如果,那么()A.m=6,n=yB.m=-6,n=yC.m=6,n=-yD.m=-6,n=-y3.,分解因式等于()A.B.C.D.以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz-9x2.y2=3xyz(4-3xy)B.3a2y-3ay+6y=3y(a2-a+2)C.-x2+xy-xz=-x(x2+y-z)D.a2b+5ab-b=b(a2+5a)5.若a+b=7,ab=10,则的值应是()A.7B.10C.70D.176.因式分解1.6x3-8x2-4x2.x2y(x-y)+2xy(y-x)3.4.运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式:平方差:完全平方:立方和:立方差:例1.把下列各式分解因式:(1)x2-4y2(2)(3)(4)例2.(1)已知,利用分解因式,求代数式的值(2)已知,求。变式练习:1.下列各式中不能运用平方差公式的是()A.B.C.D.2.分解因式其中一个因式是()A.B.C.D.3.分解因式后的结果是()A.不能分解B.C.D.4.下列代数式中是完全平方式的是()①②③④⑤⑥A.①③B.①②C.④⑥D.④③5.k-12xy2+9x2是一个完全平方式,那么k的值为()A.2B.4C.2y2D.4y46.若是完全平方式,则m的值等于()A.-5B.7C.-1D.7或-17.因式分解1.2.3.4.十字相乘法:对于二次项系数为1的二次三项式方法的特征是“拆常数项,凑一次项”例1把下列各式分解因式:(1);(2).例2把下列各式分解因式:(1);(2).对应练习:1.如果,那么p等于()A.abB.a+bC.-abD.-(a+b)2.如果,则b为()A.5B.-6C.-5D.63.多项式可分解为(x-5)(x-b),则a,b的值分别为()A.10和-2B.-10和2C.10和2D.-10和-24.不能用十字相乘法分解的是()A.B.C.D.5.分解结果等于(x+y-4)(2x+2y-5)的多项式是()A.B.C.D.6.(m+a)(m+b).a=__________,b=__________.7.因式分解(1)a2-7a+6(2)(3)(4)(5)(6)(7)(8)(9)(10)分组分解法:分组分解法,适用于四项以上的多项式,例如没有公因式,又不能直接利用分式法分解例1分解因式(1)(2)(3)(4)例2分组后能直接运用公式的因式分解。(1)(2)对应练习:1.()+()=+=。2.()+()=+=。3.()-()=。4.(1)(2)(3)(4)自检自测:一、填空题:1、中各项的公因式是__________。2、分解因式___________________________;____________________。;=____________________。3、若。二、选择题:1、下列各式从左到右的变形,是因式分解的是:()A、B、C、D、2、下列多项式,不能运用平方差公式分解的是()A、B、C、D、3、下列各式可以用完全平方公式分解因式的是()A、B、C、D、4、把多项式分解因式的结果是()A、B、C、D、5、若是一个完全平方式,则的值为()A、6B、±6C、12D、±126、是下列哪个多项式分解的结果()A、B、C、D、7、若()A、-11B、11C、-7D、7三、把下列各式分解因式(1)2-4x(2)(3)a2-9b2(4)(5)(6)(7)x2+6x-27(8)9+6(a+b)+(a+b)2

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

因式分解讲义(适合0基础的)

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部