电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高二数学 3.4《基本不等式》(1)教案(新人教A版必修5)VIP免费

高二数学 3.4《基本不等式》(1)教案(新人教A版必修5)_第1页
1/4
高二数学 3.4《基本不等式》(1)教案(新人教A版必修5)_第2页
2/4
高二数学 3.4《基本不等式》(1)教案(新人教A版必修5)_第3页
3/4
课题:§3.4基本不等式2abab第1课时授课类型:新授课【三维目标】1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2abab的证明过程;【教学难点】基本不等式2abab等号成立条件【教学过程】1.课题导入基本不等式2abab的几何背景:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系。2.讲授新课1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为22ab。这样,4个直角三角形的面积的和是2ab,正方形的面积为22ab。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222abab。当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有222abab。2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么baabbaba3.思考证明:你能给出它的证明吗?证明:因为222)(2baabba当22,()0,,()0,abababab时当时所以,0)(2ba,即.2)(22abba14.1)从几何图形的面积关系认识基本不等式2abab特别的,如果a>0,b>0,我们用分别代替a、b,可得2abab,通常我们把上式写作:(a>0,b>0)2abab2)从不等式的性质推导基本不等式2abab用分析法证明:要证2abab(1)只要证a+b(2)要证(2),只要证a+b-0(3)要证(3),只要证(-)2(4)显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。3)理解基本不等式2abab的几何意义探究:课本第110页的“探究”在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。你能利用这个图形得出基本不等式2abab的几何解释吗?易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB即CD=ab.这个圆的半径为2ba,显然,它大于或等于CD,即abba2,其中当且仅当点C与圆心重合,即a=b时,等号成立.因此:基本不等式2abab几何意义是“半径不小于半弦”评述:1.如果把2ba看作是正数a、b的等差中项,ab看作是正数a、b的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2.在数学中,我们称2ba为a、b的算术平均数,称ab为a、b的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.2[补充例题]例1已知x、y都是正数,求证:(1)yxxy≥2;(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.分析:在运用定理:abba2时,注意条件a、b均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.解:∵x,y都是正数∴yx>0,xy>0,x2>0,y2>0,x3>0,y3>0(1)xyyxxyyx2=2即xyyx≥2.(2)x+y≥2xy>0x2+y2≥222yx>0x3+y3≥233yx>0∴(x+y)(x2+y2)(x3+y3)≥2xy·222yx·233yx=8x3y3即(x+y)(x2+y2)(x3+y3)≥8x3y3.3.随堂练习1.已知a、b、c都是正数,求证(a+b)(b+c)(c+a)≥8abc分析:对于此类题目,选择定理:abba2(a>0,b>0)灵活变形,可求得结果.解:∵a,b,c都是正数∴a+b≥2ab>0b+c≥2bc>0c+a≥2ac>0∴(a+b)(b+c)(c+a)≥2ab·2bc·2ac=8abc即(a+b)(b+c)(c+a)≥8abc.4.课时小结本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数(2ba),几何平均数(ab)及它们的关系(2ba≥ab).它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下3一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab≤222ba,ab≤(2ba)2.5.评价设计【板书设计】4

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高二数学 3.4《基本不等式》(1)教案(新人教A版必修5)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部