3.3排序不等式一、教学目标1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.二、课时安排1课时三、教学重点1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.四、教学难点1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.五、教学过程(一)导入新课某班学生要开联欢会,需要买价格不同的礼品4件,5件和2件.现在选择商店中单价分别为3元,2元和1元的礼品,则至少要花________元,最多要花________元.【解析】取两组实数(2,4,5)和(1,2,3),则顺序和为2×1+4×2+5×3=25,反序和为2×3+4×2+5×1=19.所以最少花费为19元,最多花费为25元.【答案】1925(二)讲授新课教材整理1顺序和、乱序和、反序和的概念设a1≤a2≤a3≤…≤an,b1≤b2≤b3≤…≤bn为两组实数,c1,c2,…,cn是b1,b2,…,bn的任一排列,则称ai与bi(i=1,2,…,n)的相同顺序相乘所得积的和为顺序和,和为乱序和,相反顺序相乘所得积的和称为反序和.教材整理2排序不等式设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,c1,c2,…,cn是b1,b2,…,bn的任一排列,则≤≤,当且仅当a1=a2=…=an或b1=b2=…=bn时,反序和等于顺序和,此不等式简记为≤≤顺序和.(三)重难点精讲题型一、用排序不等式证明不等式(字母大小已定)例1已知a,b,c为正数,a≥b≥c,求证:(1)≥≥;(2)++≥++.【精彩点拨】由于题目条件中已明确a≥b≥c,故可以直接构造两个数组.【自主解答】(1) a≥b>0,于是≤.又c>0,∴>0,从而≥,同理, b≥c>0,于是≤,∴a>0,∴>0,于是得≥,从而≥≥.(2)由(1)知≥≥>0且a≥b≥c>0,∴≥≥,a2≥b2≥c2.由排序不等式,顺序和≥乱序和得++≥++=++=++,故++≥++.规律总结:利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.[再练一题]1.本例题中条件不变,求证:++≥++.【证明】 a≥b≥c≥0,∴a5≥b5≥c5,≥≥>0.∴≥≥,∴≥≥,由顺序和≥乱序和得++≥++=++,∴++≥++.题型二、字母大小顺序不定的不等式证明例2设a,b,c为正数,求证:++≤++.【精彩点拨】(1)题目涉及到与排序有关的不等式;(2)题目中没有给出a,b,c的大小顺序.解答本题时不妨先设定a≤b≤c,再利用排序不等式加以证明.【自主解答】不妨设0