电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第3章 圆锥曲线的方程 3.3 抛物线 3.3.1 抛物线及其标准方程教案 新人教A版选择性必修第一册-新人教A版高二选择性必修第一册数学教案VIP免费

高中数学 第3章 圆锥曲线的方程 3.3 抛物线 3.3.1 抛物线及其标准方程教案 新人教A版选择性必修第一册-新人教A版高二选择性必修第一册数学教案_第1页
1/7
高中数学 第3章 圆锥曲线的方程 3.3 抛物线 3.3.1 抛物线及其标准方程教案 新人教A版选择性必修第一册-新人教A版高二选择性必修第一册数学教案_第2页
2/7
高中数学 第3章 圆锥曲线的方程 3.3 抛物线 3.3.1 抛物线及其标准方程教案 新人教A版选择性必修第一册-新人教A版高二选择性必修第一册数学教案_第3页
3/7
3.3抛物线3.3.1抛物线及其标准方程学习目标核心素养1.掌握抛物线的定义及焦点、准线的概念.(重点)2.掌握抛物线的标准方程及其推导过程.(易错点)3.明确p的几何意义,并能解决简单的求抛物线标准方程问题.(难点)1.通过抛物线定义的学习,培养数学抽象核心素养.2.通过抛物线定义及标准方程的应用,培养学生的直观想象、数学建模等核心素养.我们已经学习了圆、椭圆、双曲线三种圆锥曲线,今天我们来学习第四种圆锥曲线——抛物线.在物理上,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象.现在来作一个实验.如图,把一根直尺固定在画图板内,直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘,把一根绳子的一端固定于三角板另一条直角边上点A,截取绳子的长等于A到l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直角尺左右滑动,这样铅笔就画出了一条曲线,这条曲线就叫做抛物线.1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.思考:抛物线的定义中,若点F在直线l上,那么点的轨迹是什么?[提示]点的轨迹是过点F且垂直于直线l的直线.2.抛物线的标准方程图形标准方程焦点坐标准线方程y2=2px(p>0)Fx=-y2=-2px(p>0)Fx=x2=2py(p>0)Fy=-x2=-2py(p>0)Fy=1.思考辨析(正确的打“√”,错误的打“×”)(1)平面内到一定点距离与到一定直线距离相等的点的轨迹一定是抛物线.()(2)y=4x2的焦点坐标为(1,0).()(3)以(0,1)为焦点的抛物线的标准方程为x2=4y.()[提示](1)×(2)×(3)√2.抛物线y2=8x的焦点到准线的距离是()A.1B.2C.4D.8C[由y2=8x得p=4,即焦点到准线的距离为4.]3.抛物线x=4y2的准线方程是()A.y=B.y=-1C.x=-D.x=C[由x=4y2得y2=x,故准线方程为x=-.]4.抛物线y=4ax2(a∈R且a≠0)的焦点坐标为________.[把方程化为标准形式为x2=y,所以焦点在y轴上,坐标为.]求抛物线的标准方程【例1】分别求满足下列条件的抛物线的标准方程.(1)准线方程为2y+4=0;(2)过点(3,-4);(3)焦点在直线x+3y+15=0上.[思路探究]→→→.[解](1)准线方程为2y+4=0,即y=-2,故抛物线焦点在y轴的正半轴上,设其方程为x2=2py(p>0).又=2,∴2p=8,故所求抛物线的标准方程为x2=8y.(2) 点(3,-4)在第四象限,∴抛物线开口向右或向下,设抛物线的标准方程为y2=2px(p>0)或x2=-2p1y(p1>0).把点(3,-4)的坐标分别代入y2=2px和x2=-2p1y中,得(-4)2=2p·3,32=-2p1·(-4),即2p=,2p1=.∴所求抛物线的标准方程为y2=x或x2=-y.(3)令x=0得y=-5;令y=0得x=-15.∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x2=-20y或y2=-60x.1.用待定系数法求抛物线标准方程的步骤2.求抛物线的标准方程时需注意的三个问题(1)把握开口方向与方程一次项系数的对应关系;(2)当抛物线的位置没有确定时,可设方程为y2=mx(m≠0)或x2=ny(n≠0),这样可以减少讨论不同情况的次数;(3)注意p与的几何意义.[跟进训练]1.根据下列条件分别求出抛物线的标准方程:(1)准线方程为y=;(2)焦点在y轴上,焦点到准线的距离为5;(3)经过点(-3,-1);(4)焦点为直线3x-4y-12=0与坐标轴的交点.[解](1)因为抛物线的准线交y轴于正半轴,且=,则p=,所以所求抛物线的标准方程为x2=-y.(2)已知抛物线的焦点在y轴上,可设方程为x2=2my(m≠0),由焦点到准线的距离为5,知|m|=5,m=±5,所以满足条件的抛物线有两条,它们的标准方程分别为x2=10y和x2=-10y.(3) 点(-3,-1)在第三象限,∴设所求抛物线的标准方程为y2=-2px(p>0)或x2=-2py(p>0).若抛物线的标准方程为y2=-2px(p>0),则由(-1)2=-2p×(-3),解得p=;若抛物线的标准方程为x2=-2py(p>0),则由(-3)2=-2p×(-1),解得p=.∴所求抛物线的标准方程为y2=-x或x2=-9y.(4)对于直线方程3x-4y-12=0,令x=0,得y=-3;令y=0,得x=4,∴抛物线的焦点...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第3章 圆锥曲线的方程 3.3 抛物线 3.3.1 抛物线及其标准方程教案 新人教A版选择性必修第一册-新人教A版高二选择性必修第一册数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部