第2课时函数的最大(小)值学习目标核心素养1.理解函数的最大值和最小值的概念及其几何意义.(重点)2.能借助函数的图象和单调性,求一些简单函数的最值.(重点、难点)3.能利用函数的最值解决有关的实际应用问题.(重点)4.通过本节内容的学习,使学生体会数形结合思想、分类讨论思想在求解最值中的作用,提高学生逻辑推理、数学运算的能力.(重点、难点)1.借助函数最值的求法,培养直观想象和数学运算素养.2.利用函数的最值解决实际问题,培养数学建模素养.函数最大值与最小值最大值最小值条件设函数y=f(x)的定义域为I,如果存在实数M满足:∀x∈I,都有f(x)≤Mf(x)≥M∃x0∈I,使得f(x0)=M结论M是函数y=f(x)的最大值M是函数y=f(x)的最小值几何意义f(x)图象上最高点的纵坐标f(x)图象上最低点的纵坐标思考:若函数f(x)≤M,则M一定是函数的最大值吗?提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才是函数的最大值,否则不是.1.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是()A.-1,0B.0,2C.-1,2D.,2C[由图可知,f(x)的最大值为f(1)=2,f(x)的最小值为f(-2)=-1.]2.设函数f(x)=2x-1(x<0),则f(x)()A.有最大值B.有最小值C.既有最大值又有最小值D.既无最大值又无最小值D[ f(x)在(-∞,0)上单调递增,∴f(x)0,x2+1>0,x1-x2<0,所以f(x1)-f(x2)<0⇒f(x1)0,∴f(x1)>f(x2),∴f(x)在[1,2)上是减函数.同理f(x)在[2,4]上是增函数.∴当x=2时,f(x)取得最小值4;当x=1或x=4时,f(x)取得最大值5.函数最值的实际应用【例3】一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元.(年利润=年销售总收入-年总投资)(1)求y(万元)与x(件)的函数关...