2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值学习目标核心素养1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点)2.掌握两点分布、二项分布的均值.(重点)3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点)1.通过离散型随机变量的均值的学习,体会数学抽象的素养.2.应用随机变量的均值解题提升数学运算的素养.1.离散型随机变量的均值(1)定义:若离散型随机变量X的分布列为:Xx1x2…xi…xnPp1p2…pi…pn则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.(2)意义:它反映了离散型随机变量取值的平均水平.(3)性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=axi+b)=P(X=xi),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.2.两点分布和二项分布的均值(1)若X服从两点分布,则E(X)=p;(2)若X~B(n,p),则E(X)=np.思考:随机变量的均值与样本平均值有什么关系?[提示]随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值.1.若随机变量X的分布列为X-101p则E(X)=()A.0B.-1C.-D.-C[E(X)=ipi=(-1)×+0×+1×=-.]2.设E(X)=10,则E(3X+5)=________.35[E(3X+5)=3E(X)+5=3×10+5=35.]3.若随机变量X服从二项分布B,则E(X)的值为________.[E(X)=np=4×=.]求离散型随机变量的均值【例1】某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X的分布列和X的均值.[解]X的取值分别为1,2,3,4.X=1,表明李明第一次参加驾照考试就通过了,故P(X=1)=0.6.X=2,表明李明在第一次考试未通过,第二次通过了,故P(X=2)=(1-0.6)×0.7=0.28.X=3,表明李明在第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.所以李明一年内参加考试次数X的分布列为X1234P0.60.280.0960.024所以X的均值为E(X)=1×0.6+2×0.28+3×0.096+4×0.024=1.544.求离散型随机变量X的均值的步骤1.理解X的实际意义,并写出X的全部取值.2.求出X取每个值的概率.3.写出X的分布列(有时也可省略).4.利用定义公式E(X)=x1p1+x2p2+…+xnpn求出均值.其中第(1)、(2)两条是解答此类题目的关键,在求解过程中要注重运用概率的相关知识.[跟进训练]1.盒中装有5节同牌号的五号电池,其中混有两节废电池.现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X的分布列及均值.[解]X可取的值为1,2,3,则P(X=1)=,P(X=2)=×=,P(X=3)=××1=.抽取次数X的分布列为X123PE(X)=1×+2×+3×=.离散型随机变量的均值公式及性质【例2】已知随机变量X的分布列如下:X-2-1012Pm(1)求m的值;(2)求E(X);(3)若Y=2X-3,求E(Y).[解](1)由随机变量分布列的性质,得+++m+=1,解得m=.(2)E(X)=(-2)×+(-1)×+0×+1×+2×=-.(3)法一:(公式法)由公式E(aX+b)=aE(X)+b,得E(Y)=E(2X-3)=2E(X)-3=2×-3=-.法二:(直接法)由于Y=2X-3,所以Y的分布列如下:Y-7-5-3-11P所以E(Y)=(-7)×+(-5)×+(-3)×+(-1)×+1×=-.1.该类题目属于已知离散型分布列求均值,求解方法是直接套用公式,E(X)=x1p1+x2p2+…+xnpn求解.2.对于aX+b型的随机变量,可利用均值的性质求解,即E(aX+b)=aE(X)+b;也可以先列出aX+b的分布列,再用均值公式求解,比较两种方式显然前者较方便.[跟进训练]2.已知随机变量X的分布列为X123P且Y=aX+3,若E(Y)=-2,则a的值为________.-3[E(X)=1×+2×+3×=. Y=aX+3,∴E(Y)=aE(X)+3...