第二章概率2.5离散型随机变量的均值与方差本节教材分析学习均值与方差就分别是用来刻画平均水平与偏离程度的,均值与方差是离散型随机变量的两个最重要的数字特征.在这一节中,课本首先通过第二节中的“取次品问题”,类比小学中求西瓜的平均质量的方法,引入离散型随机变量均值的概念.接着,通过举例,说明了均值的重要意义以及它在解决实际问题中的重要应用.最后,通过比较A,B两种表的“日走时误差”的例子,引入离散型随机变量方差的概念,说明了方差的意义,并举例进行了简单的方差计算.三维目标知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。教学重点:离散型随机变量的均值或期望的概念奎屯王新敞新疆教学难点:根据离散型随机变量的分布列求出均值或期望奎屯王新敞新疆教学建议:分两课时完成本节内容,可以一节课均值,一节课方差;也可以一节理论,一节应用.可以通过提出问题,分析理解问题,再抽象概括,进而举例应用,尽量让学生归纳总结,再进行实践应用.新课导入设计导入一:(复习引入):1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量奎屯王新敞新疆随机变量常用希腊字母ξ、η等表示奎屯王新敞新疆2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量奎屯王新敞新疆3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量奎屯王新敞新疆4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出奎屯王新敞新疆若是随机变量,是常数,则也是随机变量奎屯王新敞新疆并且不改变其属性(离散型、连续型)奎屯王新敞新疆5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的概率分布,简称ξ的分布列奎屯王新敞新疆6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1.7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在用心爱心专心1n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k=0,1,2,…,n,).于是得到随机变量ξ的概率分布如下:ξ01…k…nP……称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).8.离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么(k=0,1,2,…,).于是得到随机变量ξ的概率分布如下:ξ123…k…P……称这样的随机变量ξ服从几何分布奎屯王新敞新疆记作g(k,p)=,其中k=0,1,2,…,.导入二:情境导入前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.这样刻画离散型随机变量取值的平均水平和稳定程度呢?甲、乙两个工人生产同一种产品,在相同的条件下,他们生产件产品所出的不合格品数分别用表示,的概率分布如下.[来源:学科网ZXXK]2.问题:如何比较甲、乙两个工人的技术?用心爱心专心2用心爱心专心3