第6讲一次方程(组)及其应用第7讲一元二次方程及其应用第8讲分式方程及其应用第9讲一元一次不等式(组)第10讲一元一次不等式(组)的应用·新课标·新课标第6讲│一次方程(组)及其应用第第66讲一次方程(组)及其应用讲一次方程(组)及其应用·新课标第6讲│考点随堂练│考点随堂练│考点1一元一次方程及其解法一元一次方程的定义含有________个未知数,并且未知数的最高次数是________的方程,其一般形式为___________.一元一次方程的解能使一元一次方程左右两边________的未知数的值.一般步骤解一元一次方程的一般步骤有________、________、________、___________和系数化为1.一元一次方程的解法注意事项①解一元一次方程的步骤不是一成不变的,要根据方程的特点灵活把握;②要注意每个步骤中容易出错的地方.合并同类项一一ax+b=0相等去分母去括号移项·新课标第6讲│考点随堂练1.若2x-1=7,则x的值为()A.4B.3C.2D.-32.下列方程中,解是x=2的方程是()A.3x+6=0B.-14x+12=0C.23x=2D.5-3x=1[解析]将x=2代入所给选项检验,只有选项B方程的左右两边相等.[解析]2x=7+1,2x=8,x=4.AB·新课标第6讲│考点随堂练3.解方程x+12-2x-36=1,去分母正确的是()A.3(x+1)-2x-3=6B.3(x+1)-2x-3=1C.3(x+1)-(2x-3)=12D.3(x+1)-(2x-3)=6[解析]在方程的两边同时乘6,6×x+12-6×2x-36=1×6,所以3(x+1)-(2x-3)=6.4.已知5是关于x的方程3x-2a=7的解,则a的值为______.[解析]将x=5代入方程3×5-2a=7,解得a=4.D4·新课标第6讲│考点随堂练5.解方程:2x-13-10x-16=1.解:去分母,得2(2x-1)-(10x-1)=6;去括号,4x-2-10x+1=6;移项,4x-10x=6+2-1;合并同类项,-6x=7;系数化为1,x=-76.·新课标第6讲│考点随堂练考点2二元一次方程组及其解法二元一次方程组的概念含有______个未知数,并且未知数的最高次数是______的方程叫二元一次方程.把具有相同未知数的两个二元一次方程组合在一起叫做二元一次方程组.二元一次方程组的解能够使方程组的每个方程都成立的______未知数的值.代入法将方程组中的一个方程的一个未知数用另外一个未知数的代数式表示,代入_____________消去一个未知数.加减法将方程组的两个方程通过直接相加、减或者变形后相加、减消去一个未知数.二元一次方程组的解法相同点都是通过消元,将二元一次方程组转化为一元一次方程.另外一个方程两一两个·新课标第6讲│考点随堂练6.已知x2m-1+3y4-2n=-7是关于x,y的二元一次方程,则m,n的值是()A.m=2,n=1B.m=1,n=-32C.m=1,n=32D.m=1,n=52[解析]方程x2m-1+3y4-2n=-7是二元一次方程,则2m-1=1,4-2n=1,解得m=1,n=32.C·新课标第6讲│考点随堂练7.二元一次方程组x+2y=4,3x-y=5的解是()A.x=2,y=1B.x=1,y=2C.x=1,y=1D.x=2,y=2[解析]将所给的4个选项代入方程组检验,只有A中的两个数能使方程组的两个方程都成立,所以选A.A·新课标第6讲│考点随堂练8.如果x=-2,y=12是方程组ax-2y=5,2x+by=1的解,那么a=______,b=______.[解析]将x=-2,y=12代入方程组,得-2a-2×12=5,2×(-2)+12b=1解得a=-3,b=10.10-3·新课标第6讲│考点随堂练9.已知x=2,y=3是关于x,y的二元一次方程3x=y+a的解,求(a+1)(a-1)+7的值.解:将x=2,y=3代入中3x=y+a,得a=3.∴(a+1)(a-1)+7=a2-1+7=a2+6=9.·新课标第6讲│考点随堂练10.用适当的方法解方程组.(1)x-2y=0,3x+2y=8;解:(1)两方程直接相加,4x=8,x=2.将x=2代入x-2y=0,2-2y=0,y=1,方程组的解为x=2,y=1.·新课标第6讲│考点随堂练解:(2)3x-2y+4y=2y-1,①2x+5y=7,②将①整理,得3x-6y+4y=2y-1,3x-4y=-1,③③×2得,6x-8y=-2,④②×3得,6x+15y=21,⑤⑤-④得23y=23,y=1,将y=1代入②,2x...