一次函数与正比例函数教学设计长安区子午街道初级中学李佐民学情分析在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。本节课进一步研究其中最简单的一种函数——一次函数.由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有部分学生表述上还不太规范,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成代数式等,培养学生良好的书写习惯.教学目标:1、知识目标①能说出一次函数和正比例函数的概念,以及它们之间的关系。②能根据所给条件写出简单的一次函数表达式。2、能力目标:①经历一般规律的探索过程、发展学生的抽象思维能力。②通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。3、情感目标:在探索过程中体验成功的喜悦,树立学习的自信心.教学重点:①一次函数、正比例函数的概念及关系。②会根据已知信息写出一次函数的表达式。教学难点:建立一次函数模型解决实际问题教学方法:引导发现与自主探究设计思路:以“问题情境——自主探究——拓展应用”的模式展开教学。首先,创设问题情境,激发学生的好奇心和求知欲;其次进行知识的横纵联系,抽象概括,将感性知识上升到理性认识;最后,在习题演练中巩固概念,理解概念,让学生认识到数学知识在解决实际问题中发挥的作用,从而增强对数学学科的喜爱。教学用具:多媒体课件等教学过程一、创设情境,引入新课星期天,数学老师提着篮子(篮子重0.5斤)去市场买10斤鸡蛋,当他往篮子里装称好的鸡蛋时,发觉比过去买10斤鸡蛋的个数少很多,于是他将鸡蛋装进篮子再让摊主一起称,共称得10.55斤,即刻他要求摊主退1斤鸡蛋的钱。你能说出其中的奥秘吗?【点拨】摊主称的质量与准确值有差异,如果知道它们的函数关系,问题就可以解决了。【设计意图】以买鸡蛋的实际问题引入课题,内容符合实际生活,调动了学生的学习欲望,为新课的学习打下了一个良好的开端。二、横向联系,探索原理出示课本例1,组织学生分组讨论,并由一人展示结果。【设计意图】弹簧秤和买鸡蛋有联系,并且都含有一次函数的模型。三、纵向联系,形成概念出示课本例2,分男女生两组讨论,并各出一人展示结果。【设计意图】概念的形成要注意准确且与实际问题相联系。四、应用迁徙,巩固新知。例1:下列函数中,y是x的一次函数的是()①y=x-6;②y=;③y=7-x;④y=3x-zA、①②③B、①③④C、①②③④D、②③④【设计意图】了解什么是一次函数,并且知道为什么是一次函数。例2:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;②圆的面积y(厘米2)与它的半径x(厘米)之间的关系;③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)〔(1)y=60x,y是x的一次函数,也是x的正比例函数;(2)y=πx2,y不是x的正比例函数,也不是x的一次函数;(3)y=50+2x,y是x的一次函数,但不是x的正比例函数。〕【点拨】写函数表达式一般要按照以下步骤:先认真审题,根据题意找出等量关系,再按照等量关系写出含有两个变量的等式,最后将等式变形为用含自变量的代数式表示函数的式子。【设计意图】此题考查了实际问题中的一次函数问题。例3:为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]【设计意图】此题考查了分段计费问题。同时让学生知道在实际问题中,自变量的取值有一定范围。五、课堂小结,上升理性:1、一次函数、正比例函数的概念及关系。2、能根据所给条件写出一次函数的表达式。六、...