双曲线的性质(三)椭圆与直线的位置关系及判断方法判断方法∆<0∆=0∆>0(1)联立方程组(2)消去一个未知数(3)复习:相离相切相交一:直线与双曲线位置关系种类XYO种类:相离;相切;相交(0个交点,一个交点,一个交点或两个交点)位置关系与交点个数XYOXYO相离:0个交点相交:一个交点相交:两个交点相切:一个交点判断直线与双曲线位置关系的操作程序把直线方程代入双曲线方程得到一元一次方程得到一元二次方程直线与双曲线的渐进线平行相交(一个交点)计算判别式>0=0<0相交相切相离②相切一点:=0△③相离:△<0一、直线与双曲线的位置关系:①相交两点:△>0同侧:>0异侧:<0一点:直线与渐近线平行12xx12xx消去,得2222y=kx+my:xy-=1ab(b2-a2k2)x2-2kma2x+a2(m2+b2)=01.二次项系数为0时,L与双曲线的渐近线平行或重合。重合:无交点;平行:有一个交点。2.二次项系数不为0时,上式为一元二次方程,Δ>0直线与双曲线相交(两个交点)Δ=0直线与双曲线相切Δ<0直线与双曲线相离特别注意:直线与双曲线的位置关系中:一解不一定相切,相交不一定两解,两解不一定同支练习1.过点P(1,1)与双曲线只有共有_______条.变题:将点P(1,1)改为1.A(3,4)2.B(3,0)3.C(4,0)4.D(0,0).答案又是怎样的?4116922yx1.两条;2.三条;3.两条;4.零条.交点的一个直线XYO(1,1)。二.弦的中点问题(韦达定理与点差法)例2.已知双曲线方程为3x2-y2=3,求:(1)以2为斜率的弦的中点轨迹;(2)过定点B(2,1)的弦的中点轨迹;(3)以定点B(2,1)为中点的弦所在的直线方程.1.位置判定2.弦长公式3.中点问题4.垂直与对称5.设而不求(韦达定理、点差法)小结: