电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学第一轮复习 圆锥曲线(小结)教案VIP免费

高三数学第一轮复习 圆锥曲线(小结)教案_第1页
1/5
高三数学第一轮复习 圆锥曲线(小结)教案_第2页
2/5
高三数学第一轮复习 圆锥曲线(小结)教案_第3页
3/5
圆锥曲线一.课前预习:1.设抛物线,线段的两个端点在抛物线上,且,那么线段的中点到轴的最短距离是()2.椭圆与轴正半轴、轴正半轴分别交于两点,在劣弧上取一点,则四边形的最大面积为()3.中,为动点,,,且满足,则动点的轨迹方程是()4.已知直线与椭圆相交于两点,若弦中点的横坐标为,则双曲线的两条渐近线夹角的正切值是.5.已知为抛物线上三点,且,,当点在抛物线上移动时,点的横坐标的取值范围是.二.例题分析:例1.已知双曲线:,是右顶点,是右焦点,点在轴正半轴上,且满足成等比数列,过点作双曲线在第一、三象限内的渐近线的垂线,垂足为,(1)求证:;(2)若与双曲线的左、右两支分别交于点,求双曲线的离心率的取值范围.(1)证明:设:,用心爱心专心1由方程组得,∵成等比数列,∴,∴,,,∴,,∴.(2)设,由得,∵,∴,∴,即,∴.所以,离心率的取值范围为.例2.如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点,(1)设点分有向线段所成的比为,证明:;(2)设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.解:(1)设直线的方程为,代入抛物线方程得设,则,∵点分有向线段所成的比为,得,∴,用心爱心专心2又∵点是点关于原点的对称点,∴,∴,∴∴∴.(2)由得点,由得,∴,∴抛物线在点处切线的斜率为,设圆的方程是,则,解得,∴圆的方程是,即.三.课后作业:班级学号姓名1.直线与抛物线相交于两点,该椭圆上的点使的面积等于6,这样的点共有()1个2个3个4个2.设动点在直线上,为坐标原点,以为直角边,点为直角顶点作等腰,则动点的轨迹是()圆两条平行线抛物线双曲线用心爱心专心3xyABPQO3.设是直线上一点,过点的椭圆的焦点为,,则当椭圆长轴最短时,椭圆的方程为.4.椭圆的焦点为,点在椭圆上,如果线段的中点在轴上,那么是的倍.5.已知双曲线的左、右焦点分别为,点在双曲线的右支上,且,则此双曲线的离心率的最大值为.6.直线:与双曲线:的右支交于不同的两点,(1)求实数的取值范围;(2)是否存在实数,使得线段为直径的圆经过双曲线的右焦点?若存在,求出的值;若不存在,说明理由.7.用心爱心专心48.如图,是抛物线:上一点,直线过点并与抛物线在点的切线垂直,与抛物线相交于另一点,(1)当点的横坐标为时,求直线的方程;(2)当点在抛物线上移动时,求线段中点的轨迹方程,并求点到轴的最短距离.用心爱心专心5OPlQMxy

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学第一轮复习 圆锥曲线(小结)教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部