怎样一个小时记住中学所有三角函数公式?(三角函数的记忆规律)特别说明:这部分内容由于篇幅较长,且难道较大,并不适合低年级的同学阅读,低年级的读者可以直接跳过不看。所谓彻底理解,就是能够从最简单的概念推出最复杂的结论。所以当我们觉得某个知识很难理解的时候,首先应该想到的就是,这个知识背后那些最简单的概念我们有没有真正弄清楚。所以,我们要把三角函数彻底搞清楚,记下来并且活学活用,首先就要问:三角函数最简单的概念是什么?显然,就是sin、cos、tg、ctg这四个概念。这是三角函数的基本元素。可惜有很多人学了很长时间的三角函数,这四个符号倒是认识了,却没有能够真正理解它们的内涵。所谓三角函数,简单来说,就是直角三角形的几条边的比例关系。假设有直角△ABC,∠C=90°,对应斜边c,∠A和∠B分别对应直角边a和b。那么,sinA=a/c,cosA=b/c,tgA=a/b,ctgA=b/a。实际上,这四个函数就是为了把直角三角形的比例线段简单化,为了避免每次都要写一大堆线段的比例式,而发明出来的。sinA就代表∠A所对的直角边与斜边的比例,cosA就代表∠A的邻边与斜边的比例,tgA就代表∠A的对边与邻边的比例,ctgA就代表∠A的邻边与对边的比例。把这些最简单的概念弄清楚了,有很多基础的三角函数公式就不用记了。比如sin2A+cos2A=1,tgActgA=1,cosAtgA=sinA,sinActgA=cosA。因为这些全都是直接从这个基本概念推出来的,比如cosAtgA=sinA,sinActgA=cosA这两个公式颠来倒去的,很容易把tgA和ctgA记混淆,一不小心就会记成sinAtgA=cosA或者cosActgA=sinA。但是,只要我们知道这四个基本概念,就知道永远都不会记混淆。所以说真正高效的记忆是在彻底理解的基础上记忆,彻底理解了之后,过个十年八年都忘不掉,更不可能说什么听完课就忘、看完书就忘、过一天就忘了等等。到了高中,三角函数最大的变化其实不是公式变得更多了,而是基础概念扩大了。也就是三角函数的取值范围从初中的0到90度,变成了任意角,也就是从负无穷到正无穷。但是sinA=a/c,cosA=b/c,tgA=a/b,ctgA=b/a这四个基本概念还是没有变。学好高中的三角函数,最根本的还是在这四个基本概念的基础上,再认真理解“单位圆”的概念。把这个单位圆弄清楚了之后,整个高中的三角函数公式就迎刃而解,不管它怎么变来变去都逃不出我们的手掌心。“标准圆”就是在坐标轴上以O点为圆心,以1为直径的圆。从这个圆上任意一点做一条到X轴的垂线,这条垂线与X轴还有这个点到圆心的连线,正好组成一个直角三角形。如图所示,在直角坐标系上的四个象限的单位圆上任取一点P(x,y),做PMMO,则这里的PO=1,PM=y,所以sinO的值就是PM的长度,也就是P点的纵坐标值y。同理,这里和初中惟一不同的地方是,初中学习的是0到90度,所有的值都是非负数,而这里不仅有线段的长度,还有向量值,也就是x和y可能是负数。在第二象限,y是正数,而x是负数,所以在这个象限里sinO是正数,而cosO是负数;在第三象限,x和y都是负数,所以sinO和cosO都是正数;在第四象限,y是负数,x是正数,所以sinO是负数,而cosO是正数。把这个道理彻底梳理清楚之后,高中三角函数的所有角度变化公式就全部都不用记忆了。什么sin(-θ)=-sinθ,cos(-θ)=cosθ你就想到是角度沿着X轴对折过来了,从第一象限跑到第四象限了,再看第四象限对应的y肯定是负数,所以sin(-θ)=-sinθ,而x值还是正数,所以cos(-θ)=cosθ。有了这个东西,剩下那些千变万化的什么,sin(θ-π/2)=-sin(π/2)=-cosθ,sin(θ-3π/2)=-cosθ,cos(θ+π)=-cosθ……反正加上一个角度,就是PO往逆时针方向转,减去一个角度,就是PO往顺时针方向转,转到哪个象限,符号是正是负马上就知道了。这样后面三角函数的周期性也顺带着完全弄明白了。然后就是三角函数和与差的公式,这个也是从单位圆出来的,无非就是单位圆上两个点的距离而已。这个推导课本上都有,看起来推导过程比较长,但只要自己动手在草稿纸上画一下,整个过程就一目了然了。三角函数和与差的公式很复杂,不仅有sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ,cos(α+β)=cosαcosβ-sinαsin...