专题六数学思想方法数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略.数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分.数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、方程与函数思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三.题型四:考查归纳、探索规律能力的阅读理解题对材料信息的加工提炼和运用,对规律的归纳和发现能反映出我们的应用数学、发展数学和进行数学创新的意识和能“”力.这类试题意在检测我们的数学化能力以及驾驭数学的创新意识和才能.方法技巧解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题”,具体做法:①认真阅读材料,把握题意,注意一些数据、关键名词;②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.(3)几何型情境应用题:解决这类问题的关键是在理解题意的基础上,对问题进行恰当地抽象与概括,建立恰当的几何模型,从而确定某种几何关系,利用相关几何知识来解决.几何求值问题,当未知量不能直接求出时,一般需设出未知数,继而建立方程(组),用解方程(组)的方法去求结果,这是解题中常见的具有导向作用的一种思想.1.(2013·义乌)如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是__AB=AC(答案不唯一)__.2.(2014·杭州)已知直线a∥b,若∠1=40°50′,则∠2=__∠B__.3.(2014·温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__70__度.4.(2012·嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于(A)A.40°B.60°C.80°D.90°5.(2013·湖州)把15°30′化成度的形式,则15°30′=__15.5__度.线段的计算【例1】如图,B,C两点把线段AD分成2∶3∶4三部分,M是线段AD的中点,CD=16cm.求:(1)MC的长;(2)AB∶BM的值.解:(1)解:设AB=2x,BC=3x,则CD=4x,由题意得4x=16,∴x=4,∴AD=2×4+3×4+4×4=36(cm), M为AD的中点,∴MD=12AD=12×36=18(cm), MC=MD-CD,∴MC=18-16=2(cm)(2)AB∶BM=(2×4)∶(3×4-2)=4∶5【点评】在解答有关线段的计算问题时,一般要注意以下几个方面:①按照题中已知条件画出符合题意的图形是正确解题的前提条件;②学会观察图形,找出线段之间的关系,列算式或方程来解答.1.(1)(2012·菏泽)已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC=__11_cm或5_cm__.(2)如图,已知AB=40cm,C为AB的中点,D为CB上一点,E为DB的中点,EB=6cm,求CD的长.解: E为BD的中点,∴BD=2BE=2×6=12,又 C为AB的中点,∴BC=AB=×40=20,∴CD=BC-BD=20-12=8(cm)-3-102-3┄┄(-1,-3)(0,-3)(2,-3)-1(-3,-1)┄┄(0,-1)(2,-1)0(-3,0)(-1,0)┄┄(2,0)2(-3,2)(-1,2)(0,2)┄┄所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,则P=212=16【例2】(2013·青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有(A)个A.45B.48C.5...