下载后可任意编辑小学生奥数乘法原理练习题五篇1.小学生奥数乘法原理练习题1、一个小组有6名成员,召开一次座谈会,见面后,每两个都要握一次手,一共要握多少次手?解:5×6÷2=15(次)答:一共要握15次手。2、用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?分析与解:组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法。根据乘法原理,可以组成三位数5×6×6=180(个)。3、在小于10000的自然数中,含有数字1的数有多少个?解:不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0。使之成为四位数。先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数。由于每一位都可有9种写法,所以,根据乘法原理,下载后可任意编辑由这九个数字组成的四位数个数为9×9×9×9=6561,其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个。2.小学生奥数乘法原理练习题1、王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项竞赛,问:报名的结果会出现多少种不同的’情形?解答:三人报名参加竞赛,彼此互不影响独立报名。所以可以看成是分三步完成,即一个人一个人地去报名。首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法。其次,赵明去报名,也有4种不同的报名方法。同样,李刚也有4种不同的报名方法。满足乘法原理的条件,可由乘法原理解决。解:由乘法原理,报名的结果共有4×4×4=64种不同的情形。2、由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?解答:分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位下载后可任意编辑上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决。解:由1、2、3、4、5、6共可组成3×4×5×3=180个没有重复数字的四位奇数。3.小学生奥数乘法原理练习题在小于10000的自然数中,含有数字1的数有多少个?解不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0。使之成为四位数。先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数。由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为9×9×9×9=6561,其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的。自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个。4.小学生奥数乘法原理练习题1、从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。下载后可任意编辑分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55从极端考虑分成最小和的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55最接近的两组为27+28所以共有27-15+1=13个不同的积。另从15到27的任意一数是可以组合的。2、将所有自然数,自1开始依次写下去得到:12345678910111213……,试确定第206788个位置上出现的数字。分析:与前面的题目相似,同一个知识点:一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置,还剩:206788-9-180-2700-36000=167899,167899÷5=33579……4所以答案为33579+100=33679的第4个数字7。3、用1分、2分、5分的’硬币凑成1元,共有多少种不同的凑法?分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5分的组合:其中5分的从1枚到19枚均可,有19种方法;2分和5分的组合:其中5分的有2、4、6、……、18共9种方法;1、2、5分的组合:因为5=1+2*2,10=2*5,15=1+2*7,20=2*10,……,95=1+2*47,共...