-1-四川省巴中市2015届高三数学零诊试题文(扫描版)新人教A版-2--3--4--5-参考答案:一、选择题:DAADBDCABD二、11.(-1,1)12.213.-214.415.221三、16.解:由题设有f(x)=cosx+sinx=)4sin(2x,(Ⅰ)函数f(x)的最小正周期是T=2.(Ⅱ)由f(x0)=524得54)4sin(0x因为x0∈(0,4),所以)2,4(40x从而cos()40x=53.于是]6)4sin[(2)6(00xxf=10236417.(1)证明:因为nna31,2311nnS,所以21nnaS.(2)解:2)1()21(logloglog32313nnnaaabnn所以{bn}的通项公式为2)1(nnbn.18.解:记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;-6-C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,P(E)=3×0.2×0.82=0.384.19.解:(1)证明:如图,连接AB1,∵ABC-A1B1C1是直三棱柱,2CAB,∴AC⊥平面ABB1A1.故AC⊥BA1.又∵AB=AA1,∴四边形ABB1A1是正方形.∴BA1⊥AB1.又CA∩AB1=A,∴BA1⊥平面CAB1,又∵CB1⊥平面CBA1,∴CB1⊥BA1.-7-(2)∵AB=AA1=2,BC=5,∴AC=A1C1=1.由(1)知,A1C1⊥平面ABA1,∴323111111CASVABAABAC.20、解:(1)椭圆C的方程为12422yx.(2)由已知及(1)得(1+2k2)x2-4k2x+2k2-4=0.设点M,N的坐标分别为(x1,y1),(x2,y2),则y1=k(x1-1),y2=k(x2-1),x1+x2=22214kk,x1x2=222142kk.所以]4))[(1(212212xxxxkMN=22221)64)(1(2kkk.又因为点A(2,0)到直线y=k(x-1)的距离21kkd,所以△AMN的面积为22216421kkkdMNS.由310216422kkk解得k=±1.-8-21.解析:,ln1)(,1)1(xxxfa当1x时,.011)(,ln1)('xxfxxxf)(xf在区间),1[上是递增的.当10x时,.011)(,ln1)('xxfxxxf)(xf在区间(0,1)上是递减的故1a时,)(xf的递增区间为),1[,递减区间为(0,1),.0)1()(minfxf(2)①若,1a当ax时,.011)(,ln)('xxfxaxxf)(xf在区间),[a上是递增的.当ax0时,.011)(,ln)('xxfxxaxf)(xf在区间),0(a上是递减的②若,10a当ax时,xxxxfxaxxf111)(,ln)(',当1x时,,0)('xf当1xa时,,0)('xf则)(xf在区间),1[上是递增的,在区间)1,[a上是递减的;当ax0时,.011)(,ln)('xxfxxaxf)(xf在区间),0(a上是递减的,而)(xf在ax处有意义,则)(xf在区间),1[上是递增的,在区间)1,0(上是递减的.综上,当1a时,)(xf的递增区间为),[a,递减区间为),0(a;当10a时,)(xf的递增区间为),1[,递减区间为)1,0(;证明:(3)由(1)可知,当1,1xa时,有0ln1xx,即xxx11ln,222222ln33ln22lnnn22211311211n=)13121(1222nn-9-])1(1431321[1nnn)11141313121(1nnn)1(2)12)(1()1121(1nnnnn故222222ln33ln22lnnn<)1(2)12)(1(nnn,2nNn且