应用型问题专题1、居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB高出地面1.5m,在B处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B与水流最高点C的连线与地平面成45的角,水流的最高点C离地平面距离比喷水头B离地平面距离高出2m,水流的落地点为D.在建立如图所示的直角坐标系中:(1)求抛物线的函数解析式;(2)求水流的落地点D到A点的距离是多少m?2、岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成(如图所示).若设花园的BCx边长为(m),花园的面积为y(m).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)满足条件的花园面积能达到200m吗?若能,求出此时x的值;若不能,说明理由;(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x取何值时,花园的面积最大?最大面积为多少?第1页(共9页)3、如图,球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x6﹣)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x的函数关系式.(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.(3)若球一定能越过球网,又不出边界.则h的取值范围是多少?4、电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(xh﹣)2+k,二次函数y=a(xh﹣)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(xh﹣)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?第2页(共9页)5、明早晨从家里出发匀速步行去学校,路上一共用时20分钟.小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.设小明从家到学校的过程中,出发t分钟时,他和妈妈所在的位置与家的距离分别为s1(千米)和s2(千米),其中s1(千米)与t(分钟)之间的函数关系的图像为图中的折线段OA-AB.(1)请解释图中线段AB的实际意义;(2)试求出小明从家到学校一共走过的路程;(3)在所给的图中画出s2(千米)与t(分钟)之间函数关系的图像(给相关的点标上字母,指出对应的坐标),并指出图象的形状.6、某商家经销一种商品,用于装修门面已投资3000元。已知该商品每千克成本50元,在第一个月的试销时间内发现项,当销售单价为70元/kg时,销售量为100kg,销量w(kg)随销售单价x(元/kg)的变化而变化,销售单价每提高5元/kg,销售量减少10kg。设该商品的月销售利润为y(元)(销售利润=单价×销售量-成本-投资)。(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700,那么第二个月时里应该确定销售单价为多少元?第3页(共9页)24681012141618201ABt(分钟)s(千米)O7、已知关于x的函数的图象与x轴有交点。(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足.①求k的值;②当时,请结合函数图象确定y的最大值和最小值。8、二次函数图象的顶点横坐标是4,与x轴交于A(x1,0)、B(x2,0),x10x2﹤﹤,与y轴交于点C,O为坐标原点,。(1)求证:;(2)求a、b的值;(3)若二次函数图象与直线仅有一个交点时,求二次函...