课时总72第(42)课时二次备课课题14.2.4完全平方公式(二)填空:(1)a+b-c=a+授课类型新授学习目标知识与技能引导学生通过观察、分析使他们掌握每一个乘法公式的结构特征及公式的含义,会正确地运用这些公式.过程与方法通过探索和理解乘法公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.情感、态度与价值观培养良好的分析思想和与人合作的习惯,体会到数学算理的重要价值.教学重、难点重点:正确应用乘法公式(平方差公式,完全平方公式).难点:对乘法公式的结构特征以及内涵的理解.关键:对公式的结构特征进行具体的分析,从中感悟公式的特点并加以概括.教学方法采用“精讲.精练”的教学方法,增强教学的有效性.教学手段多媒体一、回顾交流,拓展延伸【教师提问】1.请同学们说一说平方差公式与完全平方公式的内容.2.这两个公式有什么区别?如何使用?教学过程【学生活动】踊跃发言.平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b2这里的字母a、b可以是数、单项式、多项式.二、范例学习,拓展知识【例1】计算(2a-3b-4)(2a+3b+4)该题关键在于正确的分组,一般规律是:把完全相同的项分为一组,符合相反、绝对值相等的项分为另一组.【例2】例a=-1,b=2时,求代数式[(12a+b)2+(12a-b)2](12a2-2b2)的值.【例3】已知a+b=-2,ab=-15,求a2+b2的值.解:∵(a+b)2=a2+2ab+b2,变形后可有a2+b2=(a+b)2-2ab.把a+b=-2,ab=-15代入上式,则a2+b2=(-2)2-2×(-15)=34.三、随堂练习,巩固深化【课堂演练】演练题1:应用乘法公式计算:19952-1994×1996.演练题2:已知a+b=-6,ab=8,求(1)a2+b2;(2)(a-b)2.四、课堂总结,发展潜能1.本节课应理解乘法公式是一种特殊形式的乘法,注意平方差公式与完全平方公式的区别.2.在乘法计算中,能用公式简便计算的应该使用公式,要注意公式的应用条件,记住公式的模样,在此前提下对具体题目进行细致观察,想办法将题目调整或变形,使之能使用公式,当然,有些不能使用公式的整式乘法计算就只能运用一般的多项式乘法来进行了.()(2)a-b+c=a-()(3)a-b-c=a-()(4)a+b+c=a-()判断下列运算是否正确.(1)2a-b-()=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)作业课本第5、6、7题.板书设计14.2.4完全平方公式(二)完全平方公式例:(a±b)2=a2±2ab+b2练习:教后反思成功之处:本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。采用以小组自主探究的学习方式,同时各小组展开激烈的比赛。整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。有待改进:1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明。2.必须强调学生时刻把握公式的特征及用途:完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2