数值模拟在铸造充型及凝固过程的应用进展摘要:综述了铸造过程中数值计算的基本理论,简要介绍了铸造充型及凝固当前国内外发展状况以及所存在的问题,并对铸造过程数值模拟的相关软件进行评述。最后指出合理地利用铸造模拟软件,能够优化铸件的微观组织,提高产品质量,降低产品成本,缩短产品设计和试制周期。关键词:铸造;充型过程;数值模拟;模拟软件TheApplicationofNumericalSimulationinMoldFillingandSolidificationProcessAbstract:Thebasictheoryofnumericalcalculationsissummarized,andabriefintroductionofthedevelopingsituationandexistingproblemsofthecastingmoldfillingandsolidificationprocessathomeandabroad,reviewedthenumericalsimulationsoftwareofcastingprocess.Intheend,italsoclearlyshowsthatitcanoptimizethecastingmicrostructure,improvethequality,decreasethecostandreducethedesignandtrialcyclefortheproductsbyusingthenumericalsimulationsoftwareproperly.Keywords:Casting;FillingandSolidificationprocess;NumericalSimulation;SimulationSoftware1前言铸造过程就是将高温的液态金属浇注到封闭的型腔中,通过充型和凝固过程最终获得所需形状铸件的热成形过程。在整个过程中,速度场、应力场和温度场的相互耦合作用非常复杂,难以通过实时观察和测量得出科学的结果,因此利用计算机对铸造充型和凝固过程进行数值模拟显得非常必要。从20世纪60年代开始凝固过程数值模拟,80年代初开始充型过程数值模拟和铸件应力应变数值模拟,到90年代兴起铸件微观组织数值模拟的研究,数值模拟技术已深入到铸件成形过程的各个方面,铸造过程的模拟仿真研究也正在向微观组织模拟、性能优化及使用寿命预测的方向发展,成为多功能、高保真、高效率的多学科模拟与仿真技术[1-2]。根据美国科学研究院工程技术委员会的测定,计算机模拟仿真可提高产品质量5~15倍,提高产品合格率25%,降低生产成本13%~30%,降低人力成本5%~20%,增加投入设备利用率30%~60%,缩短产品设计和试制周期30%~60%。由此可见,材料制备工艺的计算机模拟在材料研究领域的发展潜力是巨大的。据悉,美国已经大量采用计算机模拟仿真方法来研究开发汽车、飞机、导弹、航空及航海等装备发动机的结构设计、成形加工及制造[2]。铸造过程计算机数值模拟,包括凝固过程温度场的数值模拟、充型过程流动场的数值模拟、应力场数值模拟和微观组织形态的数值模拟。通过对这些单一和耦合过程数值模拟的研究,可以对铸件成形过程中产生的诸如缩孔、缩松、气孔、夹渣、浇不足、裂纹等各种铸造质量问题进行分析,找出其产生的内在原因,达到优化铸造工艺,消除铸造缺陷,提高产品质量的作用。可以在生产之前,通过铸造模拟软件对其过程质量进行预测,对不同的工艺方案进行质量对比,实施工艺优化[3-4]。由于产品质量预测在计算机上进行,并没有经过实际生产,因而可以节省大量的人力、物力、财力。尤其是新产品试制和大批量造型线生产的铸件,既方便快捷又有显著的经济效益。通过计算机数值模拟还可以使一直建立在生产经验基础上的旧铸造工艺设计从经验走向科学。2充型和凝固过程模拟的发展概况2.1充型过程数值模拟发展及研究现状充型是铸造过程中一个重要的阶段,液态金属充型过程的不平稳和充填顺序不合理以及充型时间过长会造成卷气、冷隔和浇不足等缺陷。但由于充型流动的模拟比起温度场的模拟更加复杂。与凝固过程计算机模拟相比,充型过程计算机模拟起步较晚,在液态金属的充型过程中,金属液的流动绝大多数是紊流[5],而且充型时间非常短,并伴有传热现象,流场和温度场都在不断变化、相互影响。此外,型腔内金属液与铸型间的热阻、型壁状况、入流条件、结晶潜热及固相率等都影响充型过程,使充型过程的计算机模拟成为一个相当复杂的数值模拟问题[6]。由于离心铸造复合轧辊的充型过程中液态金属和铸型温度变化较大,因此充型模拟分析显得尤为重要。进行充型模拟不仅可以模拟分析充型过程中液态金属的流动,预测缺陷,也为凝固模拟分析提供必要的初始温度场。在美国国家科学...