电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

求轨迹方程的一些常用方法 专题辅导 不分版本VIP免费

求轨迹方程的一些常用方法 专题辅导 不分版本_第1页
1/2
求轨迹方程的一些常用方法 专题辅导 不分版本_第2页
2/2
求轨迹方程的一些常用方法徐国锋由运动轨迹求方程是解析几何的一类重要问题,也是各类考试中的常考题型,下面谈谈求轨迹方程的几种常用方法。一、直接法由题设所给的动点满足的几何条件列出等式,再把坐标代入并化简,得到所求轨迹方程,这种方法叫做直接法。例1已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程。解:设点P的坐标为(x,y),则由题意可得。(1)当x≤3时,方程变为,化简得。(2)当x>3时,方程变为,化简得。故所求的点P的轨迹方程是或。二、定义法由题设所给的动点满足的几何条件,经过化简变形,可以看出动点满足二次曲线的定义,进而求轨迹方程,这种方法叫做定义法。例2已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。解:设动圆的半径为R,由两圆外切的条件可得:,。。∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。故所求轨迹方程为。三、待定系数法由题意可知曲线类型,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定系数,进而求得轨迹方程,这种方法叫做待定系数法。例3已知双曲线中心在原点且一个焦点为F(,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为,求此双曲线方程。解:设双曲线方程为。将y=x-1代入方程整理得。用心爱心专心115号编辑1由韦达定理得。又有,联立方程组,解得。∴此双曲线的方程为。四、参数法选取适当的参数,分别用参数表示动点坐标,得到动点轨迹的参数方程,再消去参数,从而得到动点轨迹的普通方程,这种方法叫做参数法。例4过原点作直线l和抛物线交于A、B两点,求线段AB的中点M的轨迹方程。解:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。把它代入抛物线方程,得。因为直线和抛物线相交,所以△>0,解得。设A(),B(),M(x,y),由韦达定理得。由消去k得。又,所以。∴点M的轨迹方程为。用心爱心专心115号编辑2

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

求轨迹方程的一些常用方法 专题辅导 不分版本

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部