专题04三角函数与三角形一.基础题组1.【浙江省“七彩阳光”联盟2019届高三期初联考】已知函数在上有两个不同的零点,则的取值范围为()A.B.C.D.【答案】C【解析】【分析】将已知条件转化为,运用辅助角公式进行化简,然后找出有两个不同的零点取值范围【详解】的取值范围为故选【点睛】本题考查了三角函数的运算,运用辅助角公式进行化简,熟练运用公式是关键,在求取值范围时采用了分步求解,注意运用图像求出两个交点的情况2.【浙江省杭州市第二中学2018届高三6月热身考】在△中,角所对的边分别为,已知,点满足,则__________;__________.【答案】8..【解析】分析:由已知利用余弦定理即可求得的值,进而求得的值,利用余弦定理可求的值.详解:如图,,,.点睛:本题主要考查余弦定理解三角形.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.3.【浙江省杭州市第二中学2018届高三6月热身考】已知,则__________;__________.【答案】或..【解析】分析:先把两边平方得到,利用弦切互化所得方程可以化成关于的方程,解出后可求.点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.4.【浙江省教育绿色评价联盟2018届高三5月适应性考试】在△中,内角的对边分别为.已知,,,则______,______.【答案】【解析】分析:由,,,利用正弦定理和余弦定理及三角形的面积公式可求出结果.详解:由于,则,解得,由于,利用正弦定理,则,整理得,解得,由,解得,,则,故答案为,.点睛:本题主要考查余弦定理与正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆.5.【浙江省杭州市第二中学2018届高三仿真考】在中,,.若,则_________.【答案】【解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据,点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.6.【浙江省杭州市第二中学2018届高三仿真考】在中,“”是“为钝角三角形”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.7.【浙江省杭州市第二中学2018届高三仿真考】函数f(x)=sin(wx+)(w>0,<)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为()A.f(x)=sin(2x+)B.f(x)=sin(2x-)C.f(x)=sin(2x+)D.f(x)=sin(2x-)【答案】D【解析】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.点睛:该题考查的是有关三角函数的图像的性质,涉及到的知识点有函数的周期,函数图像的平移变换,函数图像的对称性等,在解题的过程中,需要注意公式的正确使用,以及左右平移时对应的原则,还有就是图像的对称性的应用,结合题中所给的范...