专题五解析几何真题体验·引领卷一、选择题1.(2015·广东高考)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=02.(2015·全国卷Ⅰ)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若MF1·MF2<0,则y0的取值范围是()A.B.C.D.3.(2015·全国卷Ⅱ)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M、N两点,则|MN|=()A.2B.8C.4D.104.(2015·全国卷Ⅱ)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为()A.B.2C.D.5.(2015·浙江高考)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.6.(2015·天津高考)已知双曲线-=1(a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.-=1B.-=1C.-=1D.-=11二、填空题7.(2015·全国卷Ⅰ)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.8.(2015·湖南高考)设F是双曲线C:-=1的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为________.9.(2015·江苏高考)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为________.三、解答题10.(2015·全国卷Ⅱ)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.11.(2015·浙江高考)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).12.(2015·天津高考)已知椭圆+=1(a>b>0)的左焦点为F(-c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(1)求直线FM的斜率;2(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.专题五解析几何经典模拟·演练卷一、选择题1.(2015·浙江名校联考)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=02.(2015·台州模拟)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP=4FQ,则|QF|=()A.B.C.3D.23.(2015·瑞安模拟)等轴双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,P是双曲线上在第一象限内的一点,若直线PA,PB的倾斜角分别为α,β,且β=2α,那么β的值是()A.B.C.D.4.(2015·湖州模拟)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.45.(2015·大庆质检)如图,已知椭圆C的中心为原点O,F为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的方程为()3A.+=1B.+=1C.+=1D.+=16.(2015·石家庄质检)已知抛物线y2=8x与双曲线-y2=1的一个交点为M,F为抛物线的焦点,若|MF|=5,则该双曲线的渐近线方程为()A.5x±3y=0B.3x±5y=0C.4x±5y=0D.5x±4y=0二、填空题7.(2015·北京东城调研)已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为________.8.(2015·杭州高级中学三模)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与圆(x-2)2+(y-3)2=8相外切,则圆C的方程为________.9.(2015·石家庄质检)抛物线C:y2=2px(p>0)的焦点为F,点O是坐标原点,过点O、F的圆与抛物线C的准线相切,且该圆的面积为36π,则抛物线方程为________.三、解答题10.(2015·绍兴一中模拟)椭圆C的中心在原点,一个焦点F(-2,0),且短轴长与长轴长的比是.(1)求...