电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学异构异模复习 第三章 导数及其应用 3.2.3 导数的综合应用撬题 文-人教版高三全册数学试题VIP免费

高考数学异构异模复习 第三章 导数及其应用 3.2.3 导数的综合应用撬题 文-人教版高三全册数学试题_第1页
1/5
高考数学异构异模复习 第三章 导数及其应用 3.2.3 导数的综合应用撬题 文-人教版高三全册数学试题_第2页
2/5
高考数学异构异模复习 第三章 导数及其应用 3.2.3 导数的综合应用撬题 文-人教版高三全册数学试题_第3页
3/5
2018高考数学异构异模复习考案第三章导数及其应用3.2.3导数的综合应用撬题文1.设f(x)是定义在R上的可导函数,当x≠0时,f′(x)+>0,则关于x的函数g(x)=f(x)+的零点个数为()A.1B.2C.0D.0或2答案C解析由f′(x)+>0,得>0,当x>0时,xf′(x)+f(x)>0,即[xf(x)]′>0,函数xf(x)单调递增;当x<0时,xf′(x)+f(x)<0,即[xf(x)]′<0,函数xf(x)单调递减.∴xf(x)>0f(0)=0,又g(x)=f(x)+x-1=,函数g(x)=的零点个数等价于函数y=xf(x)+1的零点个数.当x>0时,y=xf(x)+1>1,当x<0时,y=xf(x)+1>1,所以函数y=xf(x)+1无零点所以函数g(x)=f(x)+x-1的零点个数为0.故选C.2.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)-4f(-2)>0的解集为________.答案(-∞,-2016)解析由2f(x)+xf′(x)>x2,x<0得2xf(x)+x2f′(x)0即为F(x+2014)-F(-2)>0,即F(x+2014)>F(-2),又因为F(x)在(-∞,0)上是减函数,所以x+2014<-2,∴x<-2016.3.已知f(x)=ax-cosx,x∈.若∀x1∈,∀x2∈,x1≠x2,<0,则实数a的取值范围为________.答案a≤-解析f′(x)=a+sinx.依题意可知f(x)在上为减函数,所以f′(x)≤0对x∈恒成立,可得a≤-sinx对x∈恒成立.设g(x)=-sinx,x∈.易知g(x)为减函数,故g(x)min=-,所以a≤-.4.已知函数f(x)=lnx+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=-a.若a≤0,则f′(x)>0,所以f(x)在(0,+∞)单调递增.若a>0,则当x∈时,f′(x)>0;当x∈时,f′(x)<0.所以f(x)在单调递增,在单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)无最大值;当a>0时,f(x)在x=取得最大值,最大值为f=ln+a=-lna+a-1.因此f>2a-2等价于lna+a-1<0.令g(a)=lna+a-1,则g(a)在(0,+∞)单调递增,g(1)=0.于是,当01时,g(a)>0.因此,a的取值范围是(0,1).5.设a>1,函数f(x)=(1+x2)ex-a.(1)求f(x)的单调区间;(2)证明:f(x)在(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1.解(1)f′(x)=2xex+(1+x2)ex=(x2+2x+1)ex=(x+1)2ex≥0,故f(x)是R上的单调递增函数,其单调增区间是(-∞,+∞),无单调减区间.(2)证明:因为f(0)=(1+02)e0-a=1-a<0,且f(lna)=(1+ln2a)elna-a=(1+ln2a)a-a=aln2a>0,由零点存在性定理知,f(x)在(-∞,+∞)上至少有一个零点.又由(1)知,函数f(x)是(-∞,+∞)上的单调递增函数,故函数f(x)在(-∞,+∞)上仅有一个零点.(3)证明:设点P(x0,y0),由曲线y=f(x)在点P处的切线与x轴平行知,f′(x0)=0,即f′(x0)=(x0+1)2ex0=0,(x0+1)2=0,x0=-1,即P(-1,2e-1-a).由点M(m,n)处的切线与直线OP平行知,f′(m)=kOP,即(1+m)2em==a-.由em≥1+m知,(1+m)3≤(1+m)2em=a-,即1+m≤,即m≤-1.6.已知函数f(x)=lnx-.(1)求函数f(x)的单调递增区间;(2)证明:当x>1时,f(x)1,当x∈(1,x0)时,恒有f(x)>k(x-1).解(1)f′(x)=-x+1=,x∈(0,+∞).由f′(x)>0得解得01时,F(x)1时,f(x)1满足题意.当k>1时,对于x>1,有f(x)1满足题意.当k<1时,令G(x)=f(x)-k(x-1),x∈(0,+∞),则G′(x)=-x+1-k=.由G′(x)=0得,-x2+(1-k)x+1=0.解得x1=<0,x2=>1.当x∈(1,x2)时,G′(x)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学异构异模复习 第三章 导数及其应用 3.2.3 导数的综合应用撬题 文-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部