电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学 专题10.2 双曲线试题 理-人教版高三全册数学试题VIP免费

高考数学 专题10.2 双曲线试题 理-人教版高三全册数学试题_第1页
1/32
高考数学 专题10.2 双曲线试题 理-人教版高三全册数学试题_第2页
2/32
高考数学 专题10.2 双曲线试题 理-人教版高三全册数学试题_第3页
3/32
双曲线【三年高考】1.【2017天津,理5】已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A)(B)(C)(D)【答案】【解析】由题意得,选B.2.【2017课标1,理】已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.【答案】【解析】如图所示,作,因为圆A与双曲线C的一条渐近线交于M、N两点,则为双曲线的渐近线上的点,且,,而,所以,点到直线的距离,在中,,代入计算得,即,由得,所以.3.【2017课标3,理5】已知双曲线C:(a>0,b>0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为A.B.C.D.【答案】B4.【2017山东,理14】在平面直角坐标系中,双曲线的右支与焦点为的抛物线交于两点,若,则该双曲线的渐近线方程为.【答案】【解析】,因为,所以渐近线方程为.5.【2016高考新课标1卷】已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()(A)(B)(C)(D)【答案】A【解析】表示双曲线,则,∴,由双曲线性质知:,其中是半焦距,∴焦距,解得,∴,故选A.6.【2016高考新课标2理数】已知是双曲线的左,右焦点,点在上,与轴垂直,,则的离心率为()(A)(B)(C)(D)2【答案】A【解析】因为垂直于轴,所以,因为,即,化简得,故双曲线离心率.选A.7.【2016高考天津理数】已知双曲线(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为()(A)(B)(C)(D)【答案】D【解析】根据对称性,不妨设A在第一象限,,∴,∴,故双曲线的方程为,故选D.8.【2016年高考北京理数】双曲线(,)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则_______________.【答案】2【解析】 是正方形,∴,即直线方程为,此为双曲线的渐近线,因此,又由题意,∴,.故填:2.9.【2015高考新课标1,理5】已知M()是双曲线C:上的一点,是C上的两个焦点,若,则的取值范围是()(A)(-,)(B)(-,)(C)(,)(D)(,)【答案】A10.【2015高考湖北,理8】将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位长度,得到离心率为的双曲线,则()A.对任意的,B.当时,;当时,C.对任意的,D.当时,;当时,【答案】D【解析】依题意,,,因为,由于,,,所以当时,,,,,所以;当时,,,而,所以,所以.所以当时,;当时,.11.【2015高考重庆,理10】设双曲线(a>0,b>0)的右焦点为1,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A、B、C、D、【答案】A【解析】由题意,由双曲线的对称性知在轴上,设,由得,解得,所以,所以,因此渐近线的斜率取值范围是,选A.【2017考试大纲】双曲线(1)了解双曲线的实际背景,了解性质求在刻画现实世界和解决实际问题中的作用.(2)掌握双曲线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的简单应用.(4)理解数形结合的思想.【三年高考命题回顾】纵观前三年各地高考试题,对双曲线的考查以选择、填空为主,主要侧重以下几点:(1)双曲线定义的应用;(2)求双曲线的标准方程.(3)以双曲线的方程为载体,研究与参数及渐近线有关的问题,其中离心率和渐近线是考查的重点和热点,高考题中以选择、填空题为主,分值为5分,难度为容易题和中档题.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,双曲线的定义、标准方程、几何性质性质问题是高考考试的重点,每年必考,一般是小题形式出现,解答题很少考查,主要以利用性质求双曲线方程,求焦点三角形的周长与面积,求弦长,求双曲线的离心率,最值或范围问题,过定点问题,定值问题等,直线与双曲线的位置关系,难度一般不是太大,故预测2018年高考仍会延续这种情形,以双曲线的方程与性质为主.备考时应熟练掌握双曲线的定义、求双曲线标准方程的方法,能灵活运用双曲线定义及几...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学 专题10.2 双曲线试题 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部