f(x2)D.不能确定答案C解析由f(1+x)=f(1-x)知,函数y=f(x)的图象关于直线x=1对称.又f(x)在(-∞,1]上单调递增,所以f(x)在[1,+∞)上单调递减.设点A(x1,0),B(x2,0),因为x1f(x2).6.已知O是锐角△ABC的外接圆圆心,A=60°,=2m·,则m的值为()A.B.C.1D.答案A解析对任意锐角三角形,题干中的等式都成立,则对等边三角形,题干中的等式也应成立.如图,当△ABC为正三角形时,则∠BAC=∠ABC=∠ACB=60°.取BC的中点D,连接AD,由题意可知,则有=2m·.∴)=2m×.∴·2.∴m=.故选A.7.设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是()A.B.[0,1]C.D.[1,+∞)答案C解析当a=2时,f(a)=f(2)=22=4>1,f(f(a))=2f(a),∴a=2满足题意,排除A,B选项;当a=时,f(a)=f=3×-1=1,f(f(a))=2f(a),∴a=满足题意,排除D选项,故答案为C.8.已知f(x)是定义在R上的可导函数,f(x)+f'(x)>0,且f(1)=0,则不等式f(x)>0的解集是()A.(0,+∞)B.(0,1)C.(1,+∞)D.(-∞,0)答案C解析设g(x)=exf(x)(x∈R),则g'(x)=ex[f(x)+f'(x)]>0,∴g(x)单调递增, f(1)=0,∴g(1)=0,∴f(x)>0等价于g(x)>0=g(1),∴x>1.∴f(x)>0的解集是(1,+∞).9.(2017辽宁鞍山一模,理9)已知f(x)=loga(x-1)+1(a>0,且a≠1)恒过定点M,且点M在直线=1(m>0,n>0)上,则m+n的最小值为()A.3+2B.8C.4D.4答案A解析因为f(x)=loga(x-1)+1(a>0,且a≠1)恒过定点M(2,1),所以M(2,1)在直线=1上,可得=1,m+n=(m+n)=3+≥3+2,m+n的最小值为3+2,故选A.10.(2017河南郑州一中质检一,理11)已知直线l与双曲线-y2=1相切于点P,l与双曲线两条渐近线交于M,N两点,则的值为()导学号〚16804151〛A.3B.4C.5D.0答案A解析取点P(2,0),则M(2,1),N(2,-1),∴=4-1=3,故选A.二、填空题11.设a>b>1,则logab,logba,logabb的大小关系是.(用“<”连接)答案logabb0,则a>-2.注意到直线y=kx+1恒过定点(0,1),所以题设条件等价于点(0,1)在圆内或圆上,则有02+12-2a·0+a2-2a-4≤0,即a2-2a-3≤0,解得-1≤a≤3.综上,-1≤a≤3.13.函数f(x)=4cos2cos-2sinx-|ln(x+1)|的零点个数为.答案2解析由题意可得f(x)=4cos2·sinx-2sinx-|ln(x+1)|=2sinx·-|ln(x+1)|=sin2x-|ln(x+1)|.令f(x)=0,得sin2x=|ln(x+1)|.在同一平面直角坐标系中作出两个函数y=sin2x与函数y=|ln(x+1)|的大致图象,如图所示.观察图象可知,两函数图象有2个交点,故函数f(x)有2个零点.14.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=.答案-8解析根...
1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。
碎片内容
从事历史教学,热爱教育,高度负责。