2015年河北省石家庄市高考数学复习试卷(理科)(1)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数=()A.1+iB.i﹣1C.1﹣iD.1﹣2i2.已知集合A={x|x2﹣2x﹣3≤0},B={0,1,2,3,4},则A∩B=()A.{1,2,3}B.{0,1,2,3}C.{﹣1,0,1,2,3}D.{0,1,2}3.已知向量=(﹣2,﹣6),||=,•=10,则向量与的夹角为()A.150°B.﹣30°C.120°D.60°4.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的离心率为()A.B.C.D.5.设f(x)是定义在R上的周期为3的函数,当x∈A.4πB.πC.πD.20π12.设函数f(x)=ex+2x﹣a(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y0),使得f(f(y0))=y0,则a的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.曲线y=e2x+3(e为自然对数的底数)在x=0处的切线方程为.114.实数x,y满足条件,则x﹣y的最小值为.15.已知圆C:x2+y2=1,过第一象限内一点P(a,b)作圆C的两条切线,切点分别为A、B,若∠APB=60°,则a+b的最大值为.16.观察如图的三角形数阵,依此规律,则第61行的第2个数是.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,角A、B、C的对边长分别为a、b、c,且a=3,b=2,A=2B,求cosB和c的值.18.已知{an}为公差不为0的等差数列,a1=3,且a1、a4、a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=2nan,求数列{bn}的前n项和.19.某学校为了解学生身体发育情况,随机从高一年级中抽取40人作样本,测量出他们的身高(单位:cm),身高分组区间及人数见表:分组[155,160)[160,165)[165,170)[170,175)人数a814b2(Ⅰ)求a、b的值并根据题目补全频率分布直方图;2(Ⅱ)在所抽取的40人中任意选取两人,设Y为身高不低于170cm的人数,求Y的分布列及期望.20.如图所示,在四棱锥P﹣ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,PA=AD=1,E、F分别为PD、AC的中点.(Ⅰ)求证:EF∥平面PAB;(Ⅱ)求直线EF与平面ABE所成角的大小.21.定长为3的线段AB的两个端点A、B分别在x轴、y轴上滑动,动点P满足=2.(Ⅰ)求点P的轨迹曲线C的方程;(Ⅱ)若过点(1,0)的直线与曲线C交于M、N两点,求•的最大值.22.已知函数f(x)=lnx+x2﹣ax,a∈R.(Ⅰ)若a=3,求f(x)的单调区间;(Ⅱ)若f(x)有两个极值点x1、x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k,问是否存在a,使k=﹣?若存在,求出a的值;若不存在,请说明理由.32015年河北省石家庄市高考数学复习试卷(理科)(1)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数=()A.1+iB.i﹣1C.1﹣iD.1﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:原式===1﹣i.故选:C.点评:本题考查了复数的运算法则,属于基础题.2.已知集合A={x|x2﹣2x﹣3≤0},B={0,1,2,3,4},则A∩B=()A.{1,2,3}B.{0,1,2,3}C.{﹣1,0,1,2,3}D.{0,1,2}考点:交集及其运算.专题:集合.分析:利用交集的性质求解.解答:解: 集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={0,1,2,3,4},∴A∩B={0,1,2,3}.故选:B.点评:本题考查交集的求法,是基础题,解题时要注意不等式性质的合理运用.3.已知向量=(﹣2,﹣6),||=,•=10,则向量与的夹角为()A.150°B.﹣30°C.120°D.60°考点:平面向量数量积的运算.专题:平面向量及应用.4分析:设向量与的夹角为θ,则由cosθ=的值,求得θ的值.解答:解:设向量与的夹角为θ,∴cosθ===,∴θ=60°,故选:D.点评:本题主要考查用两个向量的数量积表示两个向量的夹角,根据三角函数的值求角,属于基础题.4.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的离心率为()A.B.C.D.考点:双曲线...