电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学 专题33 球的“内切”、“外切”的解题技巧黄金解题模板-人教版高三全册数学试题VIP免费

高考数学 专题33 球的“内切”、“外切”的解题技巧黄金解题模板-人教版高三全册数学试题_第1页
1/20
高考数学 专题33 球的“内切”、“外切”的解题技巧黄金解题模板-人教版高三全册数学试题_第2页
2/20
高考数学 专题33 球的“内切”、“外切”的解题技巧黄金解题模板-人教版高三全册数学试题_第3页
3/20
专题33球的“内切”、“外切”的解题技巧【高考地位】球作为立体几何中重要的旋转体之一,成为考查的重点,基本属于必考题目.而且球相关的特殊距离,即球面距离是一个备考的重点,要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,更应特别加以关注的.题目一般属于中档难度,往往单独成题,或者在解答题中以小问的形式出现.【方法点评】类型一球的内切问题使用情景:有关球的内切问题解题模板:第一步首先画出球及它的内切圆柱、圆锥等几何体,它们公共的轴截面;第二步然后寻找几何体与几何体之间元素的关系第三步得出结论.例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.【答案】(1);(2)当时,体积之和有最小值.【点评】此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如图2的截面图,在图2中,观察与和棱长间的关系即可.【变式演练1】一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?【答案】球取出后,圆锥内水平面高为.【解析】又,则,解得.答:球取出后,圆锥内水平面高为.【点评】先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.考点:空间几何体的体积;【变式演练2】正三棱锥的高为1,底面边长为,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.【答案】,.∴得:,∴.∴.【点评】球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径来求出,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少?这里,四个球的球心这间的距离都是,四个球心构成一个棱长为的正四面体,可以计算正四面体的高为,从而上面球离开桌面的高度为.考点:空间几何体的球体积和表面积.【变式演练3】把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.【答案】.考点:空间几何体的球体积和表面积.【变式演练4】已知三棱锥,满足两两垂直,且,是三棱锥外接球上一动点,则点到平面的距离的最大值为.【答案】【解析】试题分析:由已知,可将三棱锥放入正方体中,其长宽高分别为,则到面距离最大的点应该在过球心且和面垂直的直径上,因为正方体的外接球直径和正方体的体对角线长相等,则.则到面距离的最大值为.考点:三棱锥的外接球【思想点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.类型二球的外接问题使用情景:有关球的外切问题解题模板:第一步首先画出球及它的外切圆柱、圆锥等几何体,它们公共的轴截面;第二步然后寻找几何体与几何体之间元素的关系第三步得出结论.例2.已知是同一球面上的四个点,其中是正三角形,平面,,则该球的表面积为()A.B.C.D.【答案】A,所求球的表面积为:。故选A。点睛:关于球与柱体(椎体)的组合体的问题,是近年高考的常考内容,且常与几何体的体积、表面积等结合在一起考查。解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.例3、正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的体积为()A.B.C.D.【答案】A考点:球的表面积和...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学 专题33 球的“内切”、“外切”的解题技巧黄金解题模板-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部