电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学 热点题型 专题03 解析几何 理-人教版高三全册数学试题VIP免费

高考数学 热点题型 专题03 解析几何 理-人教版高三全册数学试题_第1页
1/11
高考数学 热点题型 专题03 解析几何 理-人教版高三全册数学试题_第2页
2/11
高考数学 热点题型 专题03 解析几何 理-人教版高三全册数学试题_第3页
3/11
解析几何热点一圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.题型一利用几何性质求最值【例1】设P是椭圆+=1上一点,M,N分别是两圆:(x+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为()A.9,12B.8,11C.8,12D.10,12答案C【类题通法】利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法.【对点训练】如图所示,已知直线l:y=kx-2与抛物线C:x2=-2py(p>0)交于A,B两点,O为坐标原点,+=(-4,-12).(1)求直线l和抛物线C的方程;(2)抛物线上一动点P从A到B运动时,求△ABP面积的最大值.解析(1)由得x2+2pkx-4p=0.设A(x1,y1),B(x2,y2),则x1+x2=-2pk,y1+y2=k(x1+x2)-4=-2pk2-4.因为+=(x1+x2,y1+y2)=(-2pk,-2pk2-4)=(-4,-12),所以解得所以直线l的方程为y=2x-2,抛物线C的方程为x2=-2y.(2)设P(x0,y0),依题意,知抛物线过点P的切线与l平行时,△ABP的面积最大,又y′=-x,所以-x0=2,故x0=-2,y0=-x=-2,所以P(-2,-2).此时点P到直线l的距离d===.由得x2+4x-4=0,故x1+x2=-4,x1x2=-4,所以|AB|=×=×=4.所以△ABP面积的最大值为=8.题型二建立目标函数求最值【例2】已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若|PF|=3,求点M的坐标;(2)求△ABP面积的最大值.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0),由得x2-4kx-4m=0.于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x0,1-y0)=3(2k,2k2+m-1),所以由x=4y0得k2=-m+,由Δ>0,k2≥0,得-f=.所以当m=时,f(m)取到最大值,此时k=±.所以△ABP面积的最大值为.【类题通法】(1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等.【对点训练】平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心、以3为半径的圆与以F2为圆心、以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点.过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.①求的值;②求△ABQ面积的最大值.解析(1)由题意知2a=4,则a=2.又=,a2-c2=b2,可得b=1,所以椭圆C的方程为+y2=1.②设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.(*)则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m),所以△OAB的面积S=|m||x1-x2|===2设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.(**)由(*)(**)可知00)的一个焦点为F(-1,0),左、右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.(1)当直线l的倾斜角为45°时,求线段CD的长;(2)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.(2)当直线l的斜率不存在时,直线方程为x=-1,此时△ABD与△ABC面积相等,|S1-S2|=0;当直线l的斜率存在时,设直线方程为y=k(x+1)(k≠0...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学 热点题型 专题03 解析几何 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部