2015年河北省邯郸四中高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={x|x2﹣5x+6≤0},B={x||2x﹣1|>3},则集合A∩B=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|2<x≤3}D.{x|﹣1<x<3}2.+=()A.iB.﹣iC.1D.﹣13.若向量、满足||=||=2,与的夹角为,•(+)=()A.4B.6C.2+D.4+24.等比数列{an}的前n项和为Sn,且4a1,2a2,a3成等差数列.若a1=1,则S4=()A.15B.7C.8D.165.空间几何体的三视图如图所示,则该几何体的表面积为()A.8+2B.6+2C.8+2D.6+26.(x2﹣)6的展开式中,常数项等于()A.15B.10C.﹣15D.﹣107.执行如图的程序框图,则输出的S是()A.5040B.2450C.4850D.25508.已知函数则方程f(x)+1=0的实根个数为()A.0B.1C.2D.39.若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为()A.B.C.D.10.偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为()A.﹣2B.﹣1C.0D.111.某酒厂制作了3种不同的精美卡片,每瓶酒酒盒随机装入一张卡片,集齐3种卡片可获奖,现购买该种酒5瓶,能获奖的概率为()A.B.C.D.12.给出下列命题:①log0.53<2<()0.2;②函数f(x)=log4x﹣2sinx有5个零点;③函数f(x)=ln+的图象以为对称中心;④已知a、b、m、n、x、y均为正数,且a≠b,若a、m、b、x成等差数列,a、n、b、y成等比数列,则有m>n,x<y.其中正确命题的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.13.由直线x=1,y=1﹣x及曲线y=ex围成的封闭图形的面积为.14.已知数列{an}的通项公式为an=nsin+1,前n项和为Sn,则S2015=.15.已知x,y满足若使用z=ax+y取最大值的点(x,y)有无数个,则a的值等于.16.已知圆O:x2+y2=8,点A(2,0),动点M在圆上,则∠OMA的最大值为.三、解答题:本大题共70分,其中(17)-(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.17.已知f(x)=sin(2x﹣)+2cos2x.(1)写出f(x)的对称中心的坐标和单增区间;(2)△ABC三个内角A,B,C所对的边分别为a,b,c,若f(A)=0,b+c=2,求a的最小值.18.某青年教师专项课题进行“学生数学成绩与物理成绩的关系”的课题研究,对于高二年级800名学生上学期期末数学和物理成绩,按优秀和不优秀分类得结果:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有100人.(1)能否在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关系?(2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中数学、物理两科成绩至少有一科优秀的次数为X,求X的期望E(X).附:K2=P(K2≥k0)0.0100.0050.001k06.6357.87910.82819.如图,在三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,BC=,AB=BB1=2,∠BCC1=,点E在棱BB1上.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)若BE=λBB1,试确定λ的值,使得二面角A﹣C1E﹣C的余弦值为.20.设抛物线y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=的椭圆与抛物线的一个交点为;自F1引直线交抛物线于P、Q两个不同的点,点P关于x轴的对称点记为M,设.(Ⅰ)求抛物线的方程和椭圆的方程;(Ⅱ)若,求|PQ|的取值范围.21.已知f(x)=ex(x﹣a﹣1)﹣+ax(a>0)(1)讨论f(x)的单调性:(2)若x≥0时,f(x)+4a≥0,求正整数a的值.参考值e2≈7.389,e3≈20.086.选修4-1:几何证明选讲22.如图,在△ABC中,∠C=90°,BC=8,AB=10,O为BC上一点,以O为圆心,OB为半径作半圆与BC边、AB边分别交于点D、E,连结DE.(Ⅰ)若BD=6,求线段DE的长;(Ⅱ)过点E作半圆O的切线,切线与AC相交于点F,证明:AF=EF.选修4-4:坐标系与参数方程23.已知椭圆C:=1,直线l:(t为参数).(Ⅰ)写出椭圆C的参...