四川省木里县中学高三数学总复习圆锥曲线1新人教A版一、选择题1.(2010湖南文)5.设抛物线28yx上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是A.4B.6C.8D.12【答案】B2.(2010浙江理)(8)设1F、2F分别为双曲线22221(0,0)xyabab>>的左、右焦点.若在双曲线右支上存在点P,满足212PFFF,且2F到直线1PF的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(A)340xy(B)350xy(C)430xy(D)540xy解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,可知答案选C,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题3.(2010全国卷2理)(12)已知椭圆2222:1(0)xyCabab>>的离心率为32,过右焦点F且斜率为(0)kk>的直线与C相交于AB、两点.若3AFFB�,则k(A)1(B)2(C)3(D)2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l为椭圆的有准线,e为离心率,过A,B分别作AA1,BB1垂直于l,A1,B为垂足,过B作BE垂直于AA1与E,由第二定义得,1,由,得,∴即k=,故选B.4.(2010陕西文)9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为(A)12(B)1(C)2(D)4【答案】C解析:本题考查抛物线的相关几何性质及直线与圆的位置关系法一:抛物线y2=2px(p>0)的准线方程为2px,因为抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,所以2,423pp法二:作图可知,抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切与点(-1,0)所以2,12pp5.(2010辽宁文)(9)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A)2(B)3(C)312(D)512【答案】D2解析:选D.不妨设双曲线的焦点在x轴上,设其方程为:22221(0,0)xyabab,则一个焦点为(,0),(0,)FcBb一条渐近线斜率为:ba,直线FB的斜率为:bc,()1bbac,2bac220caac,解得512cea.6.(2010辽宁文)(7)设抛物线28yx的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足,如果直线AF斜率为3,那么PF(A)43(B)8(C)83(D)16【答案】B解析:选B.利用抛物线定义,易证PAF为正三角形,则4||8sin30PF7.(2010辽宁理)(9)设双曲线的—个焦点为F;虚轴的—个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A)2(B)3(C)312(D)512【答案】D【命题立意】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想。【解析】设双曲线方程为22221(0,0)xyabab,则F(c,0),B(0,b)直线FB:bx+cy-bc=0与渐近线y=bxa垂直,所以1bbca,即b2=ac3所以c2-a2=ac,即e2-e-1=0,所以152e或152e(舍去)8.(2010辽宁理)(7)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=(A)43(B)8(C)83(D)16【答案】B【命题立意】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想。【解析】抛物线的焦点F(2,0),直线AF的方程为3(2)yx,所以点(2,43)A、(6,43)P,从而|PF|=6+2=89.(2010全国卷2文)(12)已知椭圆C:22221xyab(a>b>0)的离心率为32,过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若3AFFB�。则k=(A)1(B)2(C)3(D)2【答案】B【解析】1122(,),(,)AxyBxy, 3AFFB�,∴123yy, 32e,设2,3atct,bt,∴222440xyt,直线AB方程为3xsyt。代入消去x,∴222(4)230systyt,∴212122223,44sttyyyyss,4222222232,344sttyyss,解得212s,2k10.(2010浙江文)(10)设O为坐标原点,1F,2F是双曲线2222xy1ab(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠1FP2F=60°,∣OP∣=7a,则该双曲线的渐近线方程为(A)x±3y=0(B)3x±y=0(C)x±2y=0(D)2x±y=0...