电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 专题七 圆锥曲线 专题突破练22 圆锥曲线中的最值、范围、证明问题 文-人教版高三全册数学试题VIP免费

高考数学二轮复习 专题七 圆锥曲线 专题突破练22 圆锥曲线中的最值、范围、证明问题 文-人教版高三全册数学试题_第1页
1/12
高考数学二轮复习 专题七 圆锥曲线 专题突破练22 圆锥曲线中的最值、范围、证明问题 文-人教版高三全册数学试题_第2页
2/12
高考数学二轮复习 专题七 圆锥曲线 专题突破练22 圆锥曲线中的最值、范围、证明问题 文-人教版高三全册数学试题_第3页
3/12
专题突破练22圆锥曲线中的最值、范围、证明问题1.经过原点的直线与椭圆C:=1(a>b>0)交于A,B两点,点P为椭圆上不同于A,B的一点,直线PA,PB的斜率均存在,且直线PA,PB的斜率之积为-.(1)求椭圆C的离心率;(2)设F1,F2分别为椭圆的左、右焦点,斜率为k的直线l经过椭圆的右焦点,且与椭圆交于M,N两点.若点F1在以|MN|为直径的圆内部,求k的取值范围.2.(2018湖南衡阳一模,文20)已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,直线y=1与C的两个交点间的距离为.(1)求椭圆C的方程;(2)如图,过F1,F2作两条平行线l1,l2与C的上半部分分别交于A,B两点,求四边形ABF2F1面积的最大值.3.已知A是椭圆E:=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,证明:0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且=0.证明:2||=||+||.5.椭圆E:=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,求k的取值范围.6.(2018山东潍坊一模,文20)抛物线E:x2=2py(0,过P作圆C的两条切线分别交y轴于M,N两点,求△PMN面积的最小值,并求出此时P点坐标.参考答案专题突破练22圆锥曲线中的最值、范围、证明问题1.解(1)设A(x1,y1),则B(-x1,-y1),P(x0,y0),∵点A,B,P三点均在椭圆上,∴=1,=1,∴作差得=-,∴kPA·kPB==-=-=-1+e2=-,∴e=.(2)设F1(-c,0),F2(c,0),直线l的方程为y=k(x-c),记M(x3,y3),N(x4,y4),∵e=,∴a2=4b2,c2=3b2,联立得(1+4k2)x2-8ck2x+4c2k2-4b2=0,Δ>0,∴当点F1在以|MN|为直径的圆内部时,=(x3+c)(x4+c)+y3·y4<0,∴(1+k2)x3x4+(c-ck2)(x3+x4)+c2+c2k2<0,得(1+k2)+(1-k2)·+c2(1+k2)<0,解得-0.y1+y2=,y1·y2=-,|AD|====.又F2到l1的距离为d=,所以=12×.令t=≥1,则,所以当t=1时,最大值为3.又(|AF1|+|BF2|)·d=(|AF1|+|DF1|)·d=|AD|·d=,所以四边形ABF2F1面积的最大值为3.3.(1)解设M(x1,y1),则由题意知y1>0.由已知及椭圆的对称性知,直线AM的倾斜角为.又A(-2,0),因此直线AM的方程为y=x+2.将x=y-2代入=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=.(2)证明将直线AM的方程y=k(x+2)(k>0)代入=1得(3+4k2)x2+16k2x+16k2-12=0.由x1·(-2)=得x1=,故|AM|=|x1+2|.由题设,直线AN的方程为y=-(x+2),故同理可得|AN|=.由2|AM|=|AN|得,即4k3-6k2+3k-8=0.设f(t)=4t3-6t2+3t-8,则k是f(t)的零点.f'(t)=12t2-12t+3=3(2t-1)2≥0,所以f(t)在(0,+∞)单调递增.又f()=15-26<0,f(2)=6>0,因此f(t)在(0,+∞)有唯一的零点,且零点k在(,2)内.所以0.当t=4时,E的方程为=1,A(-2,0).由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.将x=y-2代入=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=.(2)由题意t>3,k>0,A(-,0).将直线AM的方程y=k(x+)代入=1得(3+tk2)x2+2·tk2x+t2k2-3t=0.由x1·(-)=得x1=,故|AM|=|x1+.由题设,直线AN的方程为y=-(x+),故同理可得|AN|=.由2|AM|=|AN|得,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=.t>3等价于<0,即<0.由此得解得,∴>1.设两切线斜率为k1,k2,则k1+k2=,k1k2=.∴S△PMN=|(y0-k1x0)-(y0-k2x0)||x0|=|k1-k2|,∵|k1-k2|2=(k1+k2)2-4k1k2==,∴|k1-k2|=,则S△PMN=,令2y0-1=t(t>0),则y0=,∴S△PMN=+1≥2+1=2.当且仅当,即t=1时取等号,2y0-1=1,y0=1,此时点P坐标为(,1)或(-,1).△PMN面积的最小值为2.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 专题七 圆锥曲线 专题突破练22 圆锥曲线中的最值、范围、证明问题 文-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部