第二十二章二次函数优翼课件小结与复习要点梳理考点讲练课堂小结课后作业九年级数学上(RJ)教学课件要点梳理一般地,形如(a,b,c是常数,__)的函数,叫做二次函数.y=ax2+bx+ca≠0[注意](1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b=0,c=0时,y=ax2是特殊的二次函数.1.二次函数的概念二次函数y=a(x-h)2+ky=ax2+bx+c开口方向对称轴顶点坐标最值a>0a<0增减性a>0a<02.二次函数的图象与性质:a>0开口向上a<0开口向下x=h(h,k)y最小=ky最大=k在对称轴左边,x↗y;↘在对称轴右边,x↗y↗在对称轴左边,x↗y;↗在对称轴右边,x↗y↘2bxa24(,)24bacbaay最小=244acbay最大=244acba3.二次函数图像的平移y=ax22()yaxh左、右平移左加右减2()yaxhk上、下平移上加下减y=-ax2写成一般形式2yaxbxc沿x轴翻折4.二次函数表达式的求法1.一般式法:y=ax2+bx+c(a≠0)2.顶点法:y=a(x-h)2+k(a≠0)3.交点法:y=a(x-x1)(x-x2)(a≠0)5.二次函数与一元二次方程的关系二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有两个重合的交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.二次函数y=ax2+bx+c的图像和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式(b2-4ac)有两个交点有两个相异的实数根b2-4ac>0有两个重合的交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<06.二次函数的应用1.二次函数的应用包括以下两个方面(1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);(2)利用二次函数的图像求一元二次方程的近似解.2.一般步骤:(1)找出问题中的变量和常量以及它们之间的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义.考点一求抛物线的顶点、对称轴、最值考点讲练例1抛物线y=x2-2x+3的顶点坐标为________.【解析】方法一:配方,得y=x2-2x+3=(x-1)2+2,则顶点坐标为(1,2).方法二代入公式,,则顶点坐标为(1,2).21221bxa22441322441acbya(1,2)方法归纳解决此类题目可以先把二次函数y=ax2+bx+c配方为顶点式y=a(x-h)2+k的形式,得到:对称轴是直线x=h,最值为y=k,顶点坐标为(h,k);也可以直接利用公式求解.1.对于y=2(x-3)2+2的图像下列叙述正确的是()A.顶点坐标为(-3,2)B.对称轴为y=3C.当x≥3时,y随x的增大而增大D.当x≥3时,y随x的增大而减小C针对训练考点二二次函数的图像与性质及函数值的大小比较例2二次函数y=-x2+bx+c的图像如图所示,若点A(x1,y1),B(x2,y2)在此函数图像上,且x1y2【解析】由图像看出,抛物线开口向下,对称轴是x=1,当x<1时,y随x的增大而增大. x1-1可得2a-b<0,故②正确;由图像上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图像上横坐标为x=1的点在第四象限得出a+b+c<0,由图像上横坐标为x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.故选D.方法总结1.可根据对称轴的位置确定b的符号:b=0⇔对称轴是y轴;a、b同号⇔对称轴在y轴左侧;a、b异号⇔对称轴在y轴右侧.这个规律可简记为“左同右异”.2.当x=1时,函数y=a+b+c.当图像上横坐标x=1的点在x轴...