专题二方程(组)与不等式(组)【专题分析】本专题的主要考点有方程的解,解一元一次方程,一元一次方程的应用;二元一次方程组的解法,二元一次方程组的应用;一元二次方程的解法,一元二次方程的应用;解分式方程,分式方程的增根,分式方程的应用;不等式的性质,解一元一次不等式(组),不等式(组)的特殊解.中考中对方程(组)与不等式(组)的考查基本以客观题形式呈现,题型多样,选择题、填空题、解答题都有考查;本专题在中考中所占比重约为5%~8%.【解题方法】解决方程(组)与不等式(组)问题常用的数学思想就是转化思想;常用的数学方法有换元法,分类讨论法,整体代入法,设参数法等.(2015·兰州)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=109【思路点拨】题目中存在的等量关系是一只股票某天跌停,之后两天又涨回原价,根据此关系列方程即可.答案:B规律方法:由实际问题抽象出一元二次方程,关键是弄清题意,找出合适的等量关系,列出方程.若不等式组x+a≥0,1-2x>x-2有解,则a的取值范围是a>-1.【思路点拨】先解出不等式组的解集,根据已知不等式组x+a≥0,1-2x>x-2有解,即可求出a的取值范围.规律方法:1.求不等式组的公共解,要遵循以下原则:同大取大,同小取小,小大大小中间找,大大小小解不了.2.已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出不等式组的解集并与已知解比较,进而求得另一个未知数的取值范围.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【思路点拨】本题考查列代数式、一元一次方程在实际生活中的应用.【自主解答】解:(1)裁剪出的侧面个数为6x+4(19-x)=(2x+76)个,裁剪出的底面个数为5(19-x)=(-5x+95)个.(2)由题意,得2x+763=-5x+952,∴x=7.当x=7时,2x+763=30,∴最多可以做的盒子个数为30个.(2015·成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出.如果两批衬衫全部售完后利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【思路点拨】(1)设购进第一批衬衫x件,然后根据两次的单价相差10元列分式方程即可解决问题;(2)根据两批衬衫售完后利率不低于25%列不等式即可.【自主解答】解:(1)设该商家购进的第一批衬衫是x件,则第二批衬衫是2x件.根据题意,得288002x-13200x=10,解得x=120.检验:当x=120时,2x≠0,∴x=120是原方程的根.∴该商家购进的第一批衬衫是120件.(2)设每件衬衫的标价是a元,由(1)得第一批的进价为13200÷120=110(元/件),第二批的进价为120元/件,根据题意,得120×(a-110)+(240-50)×(a-120)+50×(0.8a-120)≥25%×(13200+28800),解得a≥150,即每件衬衫的标价至少是150元.规律方法:列分式方程解决实际问题检验时,既要看是不是分式方程的解,又要看所得结果是否符合实际意义.验根的方法有两种:一是把解出的根代入原方程进行检验;二是把解出的根代入最简公分母进行检验.如果这个根使原方程的分母不为0或使最简公分母不为0,那么这个根就是原方程的解,否则不是.能力评估检测一、选择题1.(2015·钦州)用配方法解方程x2+10x+9=0,配方后可得(A)A.(x+5)2=16B.(x+5)2=1C.(x+10)2=91D.(x+10)2=1092.若x=5是...