电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

乘法分配律教案VIP免费

乘法分配律教案_第1页
1/7
乘法分配律教案_第2页
2/7
乘法分配律教案_第3页
3/7
(一)复习准备1.口算:73+27138×1008×9×125100-6464×1(4+40)×252.在□里填上适当的数.302=300+□2003=2000+□(300+2)×43(2000+3)×14=300×□+2×□=2000×□+□×□订正时说明根据什么填数.(二)学习新课我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:)1.创设情境,激发学生学习积极性.出示102×().请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.同学们踊跃举手,如填上48,老师会迅速得出4896,填上72,得出7344……老师就是根据乘法分配律进行简算的.2.教学例6:用简便方法计算.(1)计算102×43.这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一做,对比一下,找出哪种方法简便.在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.板书:102×43=(100+2)×43=100×43+2×43=4300+86=4386反馈:(1)在括号里填上适当的数.3001×84=()×84+()×8492×203=92×(200+□)=92×200+92×□(2)计算102×24.订正时说明怎样简算的?根据是什么.(3)计算9×37+9×63.启发提问:①这类题目的结构形式是怎样的?有什么特点?②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?在学生充分讨论的基础上,师板书:9×37+9×63=9×(37+63)=9×100=900师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.反馈:计算下面各题.①(80+8)×25②32×(200+3)③35×37+65×37订正时说明是怎样应用运算定律简算的.④38×29+38讨论:这个题符合乘法分配律的结构形式吗?从乘法的意义上考虑,你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?小结我们在运用定律进行简算时,一定要认真审题,观察式子的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算.(三)巩固反馈1.师生对出题.我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式.但这两个算式合起来要能应用乘法运算定律简算.生:出72×46.师:加上28×46.板书:72×46+28×46生计算:=(72+28)×46=100×46=4600生:我出49×180.师:加上49×20.板书:49×180+49×20生计算:=49×(180+20)=49×200=9800生:我出63×49.师:加上37×51.板书:63×49+37×51提问:这题能简算吗?什么地方错了?应怎样改?启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.共同修改成:63×49+37×49或63×49+63×51.2.根据乘法分配律把相等的式子用“=”连接起来.23×12+23×8823×(12+88)(35+45)×1235×45+45×12(11×25)×411×4+25×425×(4+40)25×4+25×40讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?在讨论基础上得出:第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.(四)作业练习十四第5~10...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

乘法分配律教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部