6.3.1实数第一课时【教学目标】知识与技能:①了解无理数和实数的概念以及实数的分类;②知道实数与数轴上的点具有一一对应的关系。过程与方法:在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,情感态度与价值观:①通过了解数系扩充体会数系扩充对人类发展的作用;②②敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。教学重点:①了解无理数和实数的概念;②对实数进行分类。教学难点:对无理数的认识。【教学过程】一、复习引入无理数:生:利用计算器把下列有理数写成小数的形式,它们有什么特征?发现上面的有理数都可以写成有限小数或无限循环小数的形式师归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,把无限不循环小数叫做无理数。比如等都是无理数。…也是无理数。生:认识无理数。二、实数及其分类:师:1、实数的概念:有理数和无理数统称为实数。2、实数的分类:按照定义分类如下:实数按照正负分类如下:实数3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗?生:活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,师得出结论:我们把无理数π用数轴上的点表示了出来。生:活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示,与负半轴的交点就是。事实上通过这种做法,生得出结论:我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。师:归纳:①实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。三、例1、把无理数在数轴上表示出来。分析:类比的表示方法,我们需要构造出长度为的线段,从而以它为半径画弧,与数轴正半轴的交点就表示。解:如图所示,由勾股定理可知:,以原点为圆心,以长度为半径画弧,与数轴的正半轴交于点,则点就表示。应用:例2、(1)4.5,√2√8,哪些是无理数(2)分别写出-√4,4.5,√2的相反数。(3)求√3,-√5的绝对值生:解答。师总结①带根号的数不一定是无理数,比如,它其实是有理数4;②无限小数不一定是无理数,无限不循环小数一定是无理数。比如。四、随堂练习:1、判断下列说法是否正确:⑴无限小数都是无理数。⑵无理数都是无限小数。⑶带根号的数都是无理数。⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数。⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。2、比较下列各组实数的大小:(1)√3,1.732(2)√5-3,-2,3.14与√9五、课堂小结1、无理数、实数的意义及实数的分类.2、实数与数轴的对应关系.六、布置作业P57习题6.3第1、2、3题;.3实数初中数学人教2011课标版1教学目标1、了解无理数及实数的概念,并会对实数进行分类.2、知道实数与数轴上的点具有一一对应关系.3、学会使用计算器探求将有理数化为小数形式的规律.4、学会使用计算器估算无理数的近似值.5、学会使用计算器计算实数的值.2学情分析1、通过计算器探求将有理数化为小数形式的规律,使学生经历观察、猜想、实验等数学活动过程,培养学生数学探究能力和归纳表达能力.2、在使用计算器估算和探究的过程中,使学生学会用计算器探究数学问题的方法.3、经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.4、经历对实数进行分类,发展学生的分类意识.5、通过使用计算器估算无理数的近似值和计算实数的活动,使学生建立对无理数的初步数感.3重点难点重点了解无理数和实数的概念,以及实数的分类;会用计算器计算实数.难点对无理数的认识.4教学过程4.1第一学时教...