对磁感应强度概念的深入理解一、磁感应强度的几种定义磁感应强度是描述磁场的基本物理量,已知一个磁场的磁感应强度的分布,就可以确定运动电荷、电流在磁场中受到的作用力。磁感应强度B是和静电场的电场强度E相对应的物理量。静电场对电荷有作用力,静电场可以用检验电荷在电场中各点受到的力来研究,电场强度E定义为E=F/q。研究磁场也要引进一个检测的物体,由于磁场对运动电荷、电流有作用力,对通电线圈有力矩的作用,所以可以采用这三种物体作为检测磁场的物体,采用不同的检测物体,也就相应地给出了磁感应强度B的不同定义。二、下面介绍常见的磁感应强度的三种定义方法。(1)用一段通电直导线受到的磁场力来定义通电直导线在磁场中受到力的作用,这种力叫做安培力。实验表明,如果直导线的长度为L,电流为I,垂直放在匀强磁场中,作用在导线上的安培力大小为F=ILB。由此可以定义磁感应强度B,即B=F/(IL)。这种定义方法是用一小段通电导线作为检测物体,安培力能够演示,形象直观,便于学生接受。中学教科书多采用这种定义方法,在中学物理实验室用来测量磁感应强度的电流天平就是根据这个原理设计的。但是这种方法确定的是一小段通电导线所在范围内磁感应强度B的平均值,只有对匀强磁场,给出的才是各点的B;对于非匀强磁场,不能给出各点的B,因此,对学生建立磁感应强度的概念有不利之处。(2)用通电矩形线圈受到的力矩来定义面积为S的小矩形线圈,通以电流I,当线圈平面跟磁场平行时,线圈所受磁场力的力矩为M=BIS,由此可给出B的定义式,即B=M/(IS)。由于线圈等效于一个小磁针,线圈在磁场中受到的作用力相当于小磁针受到的作用力。所以用线圈作为检测物体来研究磁场,与历史上对磁场的认识过程比较一致,某些普通物理教科书中有采用这种定义方法的,但是由于线圈总有一定的大小,所确定的也是线圈范围内的磁感应强度B的平均值,不能严格地确定磁场中各个点的B。(3)用运动电荷受到的磁场力来定义实验表明,运动电荷在磁场中要受到力的作用,这个力叫做洛伦兹力。运动电荷在磁场中某点所受磁场力的大小跟电荷量q、运动速度v以及该点的磁感应强度B有关系,还跟运动方向与磁场方向间的夹角有关系,当电荷运动的方向垂直于磁场时所受的磁场力最大,且F=qvB,由此可给出磁感应强度B的定义式,即B=F/(vq)。电磁学是研究电磁场与电荷间相互作用及运动规律的,电磁场对电荷有作用力,通过电场对电荷的作用力引入了电场强度E,与此对应,通过磁场对运动电荷的作用力来引入磁感应强度B。从理论上讲,这种定义B的方法也比较本质、严谨,所以许多教科书中采用这种定义方法,但这种定义方法比较抽象,要求学习者有较高的抽象思维能力和推理能力。磁感应强度还有一个名称叫做磁通密度,即它在数值上等于通过与磁场方向垂直的单位面积的磁通量大小,反映了该处磁感线的疏密情况。这种定义方法可以把描述磁场的两种方法磁感应强度和磁感线有机地结合起来,便于学生理解。三、《磁场》知识的拓展磁的应用非常广泛,随着传感器技术的不断发展,和磁有关的霍尔元件得到广泛应用,我们下面主要介绍霍尔效应及其应用。霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应也是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压。根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。由于通电导线周围存在磁场,其大小与导线中的...