二次函数y=ax2+bx+c的图象教学目标:1、使学生进一步理解二次函数的基本性质;2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力.3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力.教学重点:初步理解数形结合的数学思想教学难点:初步理解数形结合的数学思想教学用具:微机教学方法:探究式、小组合作学习教学过程:例1、已知:抛物线y=x2-(m2-1)x-2m2-2⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点⑵m取什么实数时,两交点间距离最短?是多少?问题:为什么说当△>0时,抛物线y=ax2+bx+c与x轴有两个交点.(能否从数和形两方面说明)设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高.②学会合作,消除个人中心.③发现自我,提高参与度.④弘扬个体的主体性,形成健康,丰富的个性.数:点在曲线上,点的坐标满足曲线的方程.反之,曲线方程的每一个实数解对应的点都在曲线上.抛物线与x轴的交点,既在抛物线上,又在x轴上.所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式.设交点坐标为(x,y)∴这样交点问题就转化成求这个二元二次方程组的解.代入y=0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题.根据以前学过的知识,当△>0时,ax2+bx+c=0有两个不相等的实根.y=ax∴2+bx+cy=0有两个不等的实数解∴抛物线与x轴交于两个不同的点.形:顶点在x轴上方,且开口向下.或者顶点在x轴下方,且开口向上.设计意图:渗透解析几何的基本思想使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性.掌握数形结合,分类讨论的思想方法.逐步学会数学的思维.转化成代数语言为:小结:第一种方法,根据解析几何的基本思想.将求曲线的交点问题,转化成求方程组的解的问题.第二种方法,借助于图象思考问题,比较直观.发现规律后,再用数学的符号语言将其形式化.这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法.思考:试从数、形两方面说明抛物线与x轴的交点个数与判别式的符号的关系.设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程.使主体积极地参与到学习中去.以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念.⑵m取什么实数时,两交点间距离最短?是多少?设计意图:培养学生的问题意识.在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法.培养学生独立地获取数学知识的能力.渗透函数思想问题:观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明.设x1、x2为ax2+bx+c=0的两根可以推出:还可以理解为顶点到x轴距离最短.设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构.小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法.解法㈡:用十字相乘法或求根公式法求根.思考:一元二次方程与二次函数的关系.思考:求m取什么实数时,y=x2-(m2-1)x-2m2-2被直线y=2所截得的线段最短?是多少?探究活动探究问题:欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把。如果零售单价每降价0.1元,月销售量就要增加5把.(1)欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?(2)欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?(3)欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?(4)现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不...