人教版三年级《数学广角》教学案例设计意图:因此,吃透了教材之后,备课时我首先考虑几个问题。第一,借班上课,事前不能与学生见面,也不能要求学生预习,对学生的基本能力、水平无法了解,因此我决定把例题的2个与3个搭配,降低为2个与2个搭配。我认为,这并不影响学生探索解决问题的思路与方法,降低一点难度,能避免学生在初次见面的老师面前一开始就遇见困难、受到挫折,失去学习信心和兴趣。第二,如何激发学生的学习兴趣,让学生主动、积极参与课堂学习活动,也是课能否上得成功的关键。我开始冥思苦想,用什么来吸引学生。那时,我们学校的几个年段正热烈地开展外出秋游的活动,何不把数学问题放进孩子们的生活里,让数学问题生活化,让生活问题数学化,又能够达到激发兴趣、探究方法、解决问题、训练思维的目的呢?因此,我创设了模拟秋游的情境贯穿了全课,让在孩子熟悉的生活情境中探索解决数学问题的方法,又得到思维能力的锻炼和培养。第三,除了让学生在活动中主动探究,更要让学生经历数学化的过程。数学家郑毓信说过“数学化是人发展中不可缺少的素养”。在本课教学中,我想从两个方面来渗透数学化思想。由2种主食品搭配2种饮料的早餐问题,再到2座大桥搭配3条路的路线问题,最后到3对3到4对5的照相问题,让学生经历横向数学化的过程;让学生通过摆一摆、画一画、连一连,算一算的方法由具体到抽象逐步提高,让学生经历由“物体”到“符号”(图形),再由“符号”(图形)抽象到“数”的纵向数学化的过程。案例实录及评析:师:同学们,你们喜欢旅游吗?生:喜欢!师:你们出门旅游的时候见过这样的标志吗?(点击出现:AAAA风景区)生:见过!(没有!)师:你们知道在我国厦门有那些风景区是AAAA风景区?大胆猜一猜!生:中山公园!生:鼓浪屿!生:海沧动物园!生:植物园!生:科技馆生:环岛路……师:谁猜对了呢?我们一起看屏幕——厦门市的AAAA风景区有——生(看屏幕的图片说):鼓浪屿!万石植物园!海沧大桥风景区!师:今天我们一起去这些风景区做一次模拟秋游,好吗?生(兴奋):好![评议:从学生感兴趣的话题引入,创设学生感兴趣的秋游情境,充分调动了学生的学习兴趣;提出关于4A级风景区的问题,潜移默化中,能促进学生养成在生活中注意观察的数学品质。]师:秋游的过程中,我们比一比,谁解决生活中的数学问题的能力最强!(板书课题:解决问题)师:出发之前,我们先去吃早餐吧!(出示肯得基的图片)今天,肯得基提供两种主食,分别是汉堡和虾卷,两种饮料,分别是奶茶和果汁。如果,每人可以选择一种主食搭配一种饮料,那么,一共有多少种搭配方案呢?生跃跃欲试。师:你想用什么方法来解决这个问题呢?生:可以摆一摆!生:可以算一算!生:可以画一画!生:可以连一连!(师有意识地按以下顺序板书摆一摆;画一画;连一连;算一算。)师:还有其他的办法吗?生:没有了。师:现在请你选择一种你最喜欢的方法,尝试解决这个问题。生动手操作。有的拿出学具摆,有的在纸上画、连线……师:谁想把你的方法与大家分享?生1上台,在黑板上摆出了四种搭配方案。生2:我先算1×2=2,2×2=4师:你是怎么想的呢?生:汉堡可以搭配2种饮料,果汁也可以搭配2种饮料,一共有4种,所以我写1×2=2,2×2=4。师:你的想法真不错。谁能理解他的想法,帮他再说一说?生:1种主食搭配2种饮料,2种主事就是2个2种,就可以用1×2=2,2×2=4来算。[评议:学生提出用“算一算”的方法来解决,这是教师没有想到的。后来,竟出现了用1×2=2,2×2=4的算式来解决这个问题,这更是超越预设的自然生成。此时,教师如何应对,是压制或是顺势引导呢?该教师采取了顺其自然、顺势引导的方式,让学生说清楚思维过程,有利于思维能力的培养。]师:还有不同的解决方法吗?生:我用画的,再连线。师:你怎么画呢?生:我想画汉堡、虾卷、和饮料。师:请你上台来画吧!生上台,怎么画也不象……师:很难画是吧?能不能用我们学过的图形或别的什么来代替呢?生:用圆形表示汉堡和虾卷!生:用三角形表示饮料!师:那请你试一试他们建议的办法吧。生画出2个圆形、2个三角形。[...