人教版五年级数学上册《平行四边形的面积》导学案学习内容:人教版五年级上册《平行四边形的面积》第80页至第83页。学习目标:1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。学习重点:探索并掌握平行四边形的面积计算公式。学习难点:理解平行四边形的面积计算公式的推导过程。易混点:面积单位和长度单位容易混。易错点:面积单位容易写成长度单位,找对应的底和高。学习过程:一、我会做1、生活中的平行四边形?2、平行四边形和长方形的面积计算。二、我会探(一)用数方格的方法计算平行四边形的面积1、用数方格的方法算出平行四边形面积。(说明:每一个方格表示1平方米,不满一格的按半平方米)2、同桌互相讨论,得出结论。平行四边形的底和长方形的长(),都是(),平行四边形的高和长方形的宽(),都是(),这个平行四边形的面积等于它的()乘(),这个长方形的面积等于它的()宽。它们的面积(),都是()平方米。小结:用数方格的方法可以算出平行四边形的面积,但数起来比较麻烦,而且不能算的精确。因此我们也想像求长方形面积那样,求出计算平行四边形面积的计算公式,是否可以把平行四边形转化成一个长方形来计算它的面积呢?(二)合作探究A:阅读课本81页上半部分的内容,拿出准备好的平行四边形进行剪拼后,回答下列问题:(点拨导思)1、你是怎样把平行四边形转化成长方形的?2、观察拼出的长方形和原来的平行四边形,面积变了没有?3、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?B:动手操作验证猜想利用平行四边形学具,通过画一画、剪一剪、拼一拼,把平行四边形转化成长方形。想一想,怎样剪才能保证拼成长方形?C:汇报交流通过观察、比较拼成的长方形和原来的平行四边形,我发现:(1)把一个平行四边形沿着()剪,通过平移后,可以转化为()形,长方形的面积与原来的平行四边形面积().(2)长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),因为长方形的面积=()×(),所以,平行四边形的面积=()×()。(3)得出结论:平行四边形的面积=()×()。S=ah4、学习教学例1(教材第81页)例1.平行四边形花坛的底是6m,高是4m。它的面积是多少?三、我会做:1、口算出每个平行四边形的面积:2、下面平行四边形的面积是:A:30×25=750平方分米B:25×20=500平方分米C:30×20=600平方分米四、课堂检测:1、计算下面每个平行四边形的面积。(1)底=8分米,高=9分米(2)a=25厘米,h=4厘米2、选择:(1)已知一个平行四边形的底是2米,高是5分米,它的面积是()。A、10平方米B、100平方分米C、100分米(2)已知一个平行四边形的面积是30平方米,底是6米,高是()。A、180平方米B、5平方米C、5米(3)A、B、C中哪一个的面积是3×2=6平方厘米()。ABC3、判断:①平行四边形的底越长,面积越大。()②平行四边形的面积等于长方形的面积()③下图中两个平行四边形的面积相等。()2.5厘米3厘米4厘米5米4分米分米53米30分米25分米20分米2厘米3厘米3厘米2厘米2厘米2厘米3厘米五、堂清内容:1、计算下面每个平行四边形的面积。(1)底=8分米,高=9分米(2)a=25厘米,h=4厘米2、判断:①平行四边形的底越长,面积越大。()②平行四边形的面积等于长方形的面积()板书设计平行四边形的面积因为:长方形的面积=长×宽例1.所以:平行四边形面积=底×高S=ah=6×4=24(㎡)S=ah