电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

异面直线所成的角求法-总结加分析VIP免费

异面直线所成的角求法-总结加分析_第1页
1/11
异面直线所成的角求法-总结加分析_第2页
2/11
异面直线所成的角求法-总结加分析_第3页
3/11
异面直线所成的角一、平移法:常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。直接平移法1.在空间四边形ABCD中,AD=BC=2,E,F分别为AB、CD的中点,EF=3,求AD、BC所成角的大小.解:设BD的中点G,连接FG,EG。在△EFG中EF=3FG=EG=1∴∠EGF=120°∴AD与BC成60°的角。2.正ABC的边长为a,S为ABC所在平面外的一点,SA=SB=SC=a,E,F分别是SC和AB的中点.求异面直线SA和EF所成角.答案:45°3.S是正三角形ABC所在平面外的一点,如图SA=SB=SC,且ASB=BSC=CSA=2,M、N分别是AB和SC的中点.求异面直线SM与BN所成的角的余弦值.证明:连结CM,设Q为CM的中点,连结QN则QN∥SM∴∠QNB是SM与BN所成的角或其补角连结BQ,设SC=a,在△BQN中BN=a25NQ=21SM=42aBQ=a414∴COS∠QNB=5102222NQBNBQNQBN4.如图,在直三棱柱ABC-A1B1C1中,∠BCA=90°,M、N分别是A1B1和A1C1的中点,若BC=CA=CC1,求BM与AN所成的角.解:连接MN,作NG∥BM交BC于G,连接AG,易证∠GNA就是BM与AN所成的角.设:BC=CA=CC1=2,则AG=AN=5,GN=BM=6,cos∠GNA=1030562556。5.如图,在正方体1111DCBAABCD中,E、F分别是1BB、CD的中点.求AE与FD1所成的角。BMANCS证明:取AB中点G,连结A1G,FG,因为F是CD的中点,所以GF∥AD,又A1D1∥AD,所以GF∥A1D1,故四边形GFD1A1是平行四边形,A1G∥D1F。设A1G与AE相交于H,则∠A1HA是AE与D1F所成的角。因为E是BB1的中点,所以Rt△A1AG≌△ABE,∠GA1A=∠GAH,从而∠A1HA=90°,即直线AE与D1F所成的角为直角。6.如图1—28的正方体中,E是A′D′的中点(1)图中哪些棱所在的直线与直线BA′成异面直线?(2)求直线BA′和CC′所成的角的大小;(3)求直线AE和CC′所成的角的正切值;(4)求直线AE和BA′所成的角的余弦值解:(1) A平面BC′,又点B和直线CC′都在平面BC′内,且BCC′,∴直线BA′与CC′是异面直线同理,正方体12条棱中的C′D′、DD′、DC、AD、B′C′所在的直线都和直线BA′成异面直线(2) CC′∥BB′,∴BA′和BB′所成的锐角就是BA′和CC′所成的角 ∠A′BB′=45°∴BA′和CC′所成的角是45°(3) AA′∥BB′∥CC′,故AE和AA′所成的锐角∠A′AE是AE和CC′所成的角在Rt△AA′E中,tan∠A′AE==,所以AE和CC′所成角的正切值是(4)取B′C′的中点F,连EF、BF,则有EF∥=AB∥=AB,∴ABFE是平行四边形,从而BF∥=AE,即BF∥AE且BF=AE.∴BF与BA′所成的锐角∠A′BF就是AE和BA′所成的角设正方体各棱长为2,连A′F,利用勾股定理求出△A′BF的各边长分别为A′B=2,A′F=BF=,由余弦定理得:cos∠A′BF=7.长方体ABCD—A1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的大小。解法一:如图④,过B1点作B1E∥BC1交CB的延长线于E点。则∠DB1E或其补角就是异面直线DB1与BC1所成角,连结DE交AB于M,DE=2DM=3,∠DB1E=∴∠DB1E=。ABFM(图1-29)55B(图1-28)AABCDCDFE解法二:如图⑤,在平面D1DBB1中过B点作BE∥DB1交D1B1的延长线于E,则∠C1BE就是异面直线DB1与BC1所成的角,连结C1E,在△B1C1E中,∠C1B1E=135°,C1E=3,∠C1BE=,∴∠C1BE=。练习:8.如图,PA矩形ABCD,已知PA=AB=8,BC=10,求AD与PC所成角的余切值为。9.在长方体ABCD-A1B1C1D1中,若棱BB1=BC=1,AB=,求DB和AC所成角的余弦值.中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。解法一:如图①连结B1C交BC1于0,过0点作OE∥DB1,则∠BOE为所求的异面直线DB1与BC1所成的角。连结EB,由已知有B1D=,BC1=5,BE=,∴∠BOE=∴∠BOE=解法二:如图②,连DB、AC交于O点,过O点作OE∥DB1,过E点作EF∥C1B,则∠OEF或其补角就是两异面直线所成的角,过O点作OM∥DC,连结MF、OF。则OF=,∠OEF=,∴异面直线B1D与BC1所成的角为。解法三:...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

异面直线所成的角求法-总结加分析

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部