第3讲等比数列及其前n项和分层训练A级基础达标演练(时间:30分钟满分:60分)一、填空题(每小题5分,共30分)1.设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}前7项的和为________.解析设数列{an}的公比为q(q>0),前n项和为Sn,由a1=1,a5=16,得q4==16,所以q=2,从而得S7==127.答案1272.设数列{a}前n项和为Sn,a1=t,a2=t2,Sn+2-(t+1)Sn+1+tSn=0,则{an}是________数列,通项an=________.解析由Sn+2-(t+1)Sn+1+tSn=0,得Sn+2-Sn+1=t(Sn+1-Sn),所以an+2=tan+1,所以=t,又=t,所以{an}成等比数列,且an=t·tn-1=tn.答案等比tn3.(·泰州模拟)数列{an}为正项等比数列,若a2=2,且an+an+1=6an-1(n∈N,n≥2),则此数列的前4项和S4=________.解析由a1q=2,a1qn-1+a1qn=6a1qn-2,得qn-1+qn=6qn-2,所以q2+q=6.又q>0,所以q=2,a1=1.所以S4===15.答案154.已知等比数列{an}的前n项和Sn=t·5n-2-,则实数t的值为________.解析 a1=S1=t-,a2=S2-S1=t,a3=S3-S2=4t,∴由{an}是等比数列知2=×4t,显然t≠0,所以t=5.答案55.(·南京模拟)已知各项都为正数的等比数列{an}中,a2·a4=4,a1+a2+a3=14,则满足an·an+1·an+2≥的最大正整数n的值为________.解析由等比数列的性质,得4=a2·a4=a(a3>0),所以a3=2,所以a1+a2=14-a3=12,于是由解得所以an=8·n-1=n-4.于是由an·an+1·an+2=a=3(n-3)=n-3≥,得n-3≤1,即n≤4.答案46.(·宿迁联考)设a1=2,an+1=,bn=-1,n∈N*,则b2011=________.解析由题意得b1=-1=3,bn+1=-1=2-1=2(bn+1)-1=2bn+1,∴bn+1+1=2(bn+1),故=2,故数列{bn+1}是以4为首项,2为公比的等比数列.∴bn+1=2n+1,∴bn=2n+1-1.答案22012-1二、解答题(每小题15分,共30分)7.设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*,且a≠3.(1)设bn=Sn-3n,求数列{bn}的通项公式;(2)若an+1≥an,n∈N*,求a的取值范围.解(1)依题意,Sn+1-Sn=an+1=Sn+3n,即Sn+1=2Sn+3n,由此得Sn+1-3n+1=2(Sn-3n),∴{Sn-3n}是等比数列,因此,所求通项公式为bn=Sn-3n=(a-3)2n-1,n∈N*①(2)由①知Sn=3n+(a-3)2n-1,n∈N*,于是,当n≥2时,an=Sn-Sn-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2=2×3n-1+(a-3)2n-2,an+1-an=4×3n-1+(a-3)2n-2=2n-2,当n≥2时,an+1≥an⇔12·n-2+a-3≥0⇔a≥-9,又a2=a1+3>a1.综上,所求的a的取值范围是[-9∞,+).8.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2.(1)设bn=an+1-2an,证明:数列{bn}是等比数列;(2)求数列{an}的通项公式.(1)证明由已知有a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3.又an+2=Sn+2-Sn+1=4an+1+2-(4an+2)=4an+1-4an,于是an+2-2an+1=2(an+1-2an),即bn+1=2bn.因此数列{bn}是首项为3,公比为2的等比数列.(2)解由(1)知等比数列{bn}中b1=3,公比q=2,所以an+1-2an=3×2n-1,于是-=,因此数列是首项为,公差为的等差数列,=+(n-1)×=n-,所以an=(3n-1)·2n-2.分层训练B级创新能力提升1.已知{an}为等比数列,Sn是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为,则S5=________.解析设数列{an}的公比为q,则由等比数列的性质知,a2·a3=a1·a4=2a1,即a4=2.由a4与2a7的等差中项为知,a4+2a7=2×,∴a7==.∴q3==,即q=.∴a4=a1q3=a1×=2,∴a1=16,∴S5==31.答案312.(·江苏卷)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值为________.解析由题意知a3=q,a5=q2,a7=q3且q≥1,a4=a2+1,a6=a2+2且a2≥1,那么有q2≥2且q3≥3.故q≥,即q的最小值为.答案3.已知数列{xn}满足lgxn+1=1+lgxn(n∈N*),且x1+x2+x3…++x100=1,则lg(x101+x102…++x200)=________.解析由lgxn+1=1+lgxn(n∈N*)得lgxn+1-lgxn=1,∴=10,∴数列{xn}是公比为10的...