限时集训(六十五)n次独立重复试验与二项分布(限时:45分钟满分:81分)一、选择题(本大题共6小题,每小题5分,共30分)1.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为()A.0.12B.0.42C.0.46D.0.882.(·济南模拟)位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是()A.B.C.D.3.(·荆州质检)已知随机变量ξ服从二项分布ξ~B,即P(ξ=2)等于()A.B.C.D.4.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.B.C.D.5.将一枚硬币连掷5次,如果出现k次正面向上的概率等于出现k+1次正面向上的概率,那么k的值为()A.0B.1C.2D.36.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为()A.B.C.D.二、填空题(本大题共3小题,每小题5分,共15分)7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.8.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用ξ表示这5位乘客在第20层下电梯的人数,则P(ξ=4)=________.9.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是________.三、解答题(本大题共3小题,每小题12分,共36分)10.在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做每一道题的概率均为.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.11.下图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列.12.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(1)求出在1次游戏中玩家甲胜玩家乙的概率;(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X,求X的分布列.答案限时集训(六十五)n次独立重复试验与二项分布1.D2.D3.D4.B5.C6.A7.0.728.9.10.解:(1)设事件A表示“甲选做第21题”,事件B表示“乙选做第21题”,则甲、乙两名学生选做同一道题的事件为“AB+AB”,且事件A、B相互独立.故P(AB+)=P(A)P(B)+P()P()=×+×=.(2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B则P(ξ=k)=Ck4-k=C4(k=0,1,2,3,4).故变量ξ的分布列为:ξ01234P11.解:(1)依题意及频率分布直方图知,0.02+0.1+x+0.37+0.39=1,解得x=0.12.(2)由题意知,X~B(3,0.1)因此P(X=0)=C×0.93=0.729,P(X=1)=C×0.1×0.92=0.243,P(X=2)=C×0.12×0.9=0.027,P(X=3)=C×0.13=0.001.故随机变量X的分布列为:X0123P0.7290.2430.0270.00112.解:(1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头、石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).共有9个基本事件,玩家甲胜玩家乙的基本事件分别是:(石头,剪刀);(剪刀,布);(布,石头),共有3个.所以在1次游戏中玩家甲胜玩家乙的概率P=.(2)X的可能取值分别为0,1,2,3.X~B,则P(X=0)=C·3=,P(X=1)=C·1·2=,P(X=2)=C·2·1=,P(X=3)=C·3=.X的分布列如下:X0123P