电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线专题突破讲义 文-人教版高三全册数学试题VIP免费

高考数学二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线专题突破讲义 文-人教版高三全册数学试题_第1页
1/13
高考数学二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线专题突破讲义 文-人教版高三全册数学试题_第2页
2/13
高考数学二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线专题突破讲义 文-人教版高三全册数学试题_第3页
3/13
第2讲椭圆、双曲线、抛物线1.以选择题、填空题形式考查圆锥曲线的方程、几何性质(特别是离心率).2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(2a<|F1F2|).(3)抛物线:|PF|=|PM|,点F不在直线l上,PM⊥l于M.2.求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.例1(1)(2017·湛江模拟)已知双曲线-=1(a>0)的一个焦点与抛物线y2=8x的焦点重合,则a等于()A.1B.2C.D.答案A解析抛物线y2=8x的焦点为F,在双曲线-=1(a>0)中,c=2,c2=4,b2=3,所以a2=c2-b2=4-3=1,所以a=1,故选A.(2)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为()A.y2=9xB.y2=6xC.y2=3xD.y2=x答案C解析如图分别过点A,B作准线的垂线,分别交准线于点E,D,设=a,则由已知得=2a,由抛物线定义,得=a,故∠BCD=30°,在Rt△ACE中, =|AF|=3,=3+3a,∴2=,即3+3a=6,从而得a=1,=3a=3.∴p===,因此抛物线方程为y2=3x,故选C.思维升华(1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意当焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.跟踪演练1(1)(2017届沈阳市东北育才学校模拟)已知双曲线与椭圆+=1的焦点相同,且它们的离心率的乘积等于,则此双曲线的方程为()A.-=1B.-=1C.-=1D.-=1答案B解析由题意得c=4,×=⇒a=2,∴b2=12.又双曲线的焦点在y轴上,∴双曲线的方程为-=1,故选B.(2)△ABC的两个顶点为A(-4,0),B(4,0),△ABC的周长为18,则C点轨迹方程为()A.+=1(y≠0)B.+=1(y≠0)C.+=1(y≠0)D.+=1(y≠0)答案D解析 △ABC的两顶点A(-4,0),B(4,0),周长为18,∴|AB|=8,|BC|+|AC|=10. 10>8,∴点C到两个定点的距离之和等于定值,满足椭圆的定义,∴点C的轨迹是以A,B为焦点的椭圆.∴2a=10,2c=8,即a=5,c=4,∴b=3.∴C点的轨迹方程为+=1(y≠0).故选D.热点二圆锥曲线的几何性质1.椭圆、双曲线中a,b,c之间的关系(1)在椭圆中:a2=b2+c2,离心率为e==.(2)在双曲线中:c2=a2+b2,离心率为e==.2.双曲线-=1(a>0,b>0)的渐近线方程为y=±x.注意离心率e与渐近线的斜率的关系.例2(1)(2017·全国Ⅲ)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则椭圆C的离心率为()A.B.C.D.答案A解析由题意知,以A1A2为直径的圆的圆心坐标为(0,0),半径为a.又直线bx-ay+2ab=0与圆相切,所以圆心到直线的距离d==a,解得a=b,所以=.所以e=====.故选A.(2)(2017届百校大联考全国名校联盟联考)过双曲线E:-=1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与E的渐近线交于B,C两点,若BC+2BA=0,则双曲线E的渐近线方程为()A.y=±xB.y=±4xC.y=±xD.y=±2x答案D解析直线l:y=-x+a与渐近线l1:bx-ay=0交于点B,直线l:y=-x+a与渐近线l2:bx+ay=0交于点C,A.因为BC+2BA=0,所以AC=3AB,所以-a=3,所以b=2a.所以双曲线E的渐近线方程为y=±2x,故选D.思维升华(1)明确圆锥曲线中a,b,c,e各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c和a的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c,a,b的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.跟踪演练2(1)(2017届株洲一模)已知椭圆+=1(a>b>0),F1为左焦点,A为右顶点,B1,B2分别为上、下顶点,若F1,A,B1,B2四点在同一个圆上,则此椭圆的离心率为()A.B.C.D.答案B解析由题设圆的半径r=,则b2+2=2,即a2-c2=ac⇒e2+e-1=0,解得e=,故选B.(2)已知双曲线C:-=1(a>0,b>0)的焦距为2c,直线l过点且与...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线专题突破讲义 文-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部