电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学 专题12.2 离散型随机变量的分布列、均值与方差试题 理-人教版高三全册数学试题VIP免费

高考数学 专题12.2 离散型随机变量的分布列、均值与方差试题 理-人教版高三全册数学试题_第1页
1/37
高考数学 专题12.2 离散型随机变量的分布列、均值与方差试题 理-人教版高三全册数学试题_第2页
2/37
高考数学 专题12.2 离散型随机变量的分布列、均值与方差试题 理-人教版高三全册数学试题_第3页
3/37
离散型随机变量的分布列、均值与方差【三年高考】1.【2017浙江,8】已知随机变量满足P(=1)=pi,P(=0)=1—pi,i=1,2.若0C.>,,>【答案】A【解析】试题分析:,选A.2.【2017山东,理18】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【解析】(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,则(II)由题意知X可取的值为:.则因此X的分布列为X01234PX的数学期望是=3.【2017课标3,理18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?【解析】(1)由题意知,所有的可能取值为200,300,500,由表格数据知,,.因此的分布列为0.20.40.4⑵由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑当时,若最高气温不低于25,则,若最高气温位于区间,则;若最高气温低于20,则;因此.当时,若最高气温不低于20,则;若最高气温低于20,则;因此.所以n=300时,Y的数学期望达到最大值,最大值为520元.4.【2017北京,理17】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(Ⅱ)从图中A,B,C,D四人中随机.选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)【解析】(Ⅰ)由图知,在服药的50名患者中,指标的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标的值小于60的概率为.(Ⅱ)由图知,A,B,C,D四人中,指标的值大于1.7的有2人:A和C.所以的所有可能取值为0,1,2..所以的分布列为012故的期望.(Ⅲ)在这100名患者中,服药者指标数据的方差大于未服药者指标数据的方差.5.【2017天津,理16】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.(Ⅱ)设表示第一辆车遇到红灯的个数,表示第二辆车遇到红灯的个数,则所求事件的概率为.所以,这2辆车共遇到1个红灯的概率为.6.【2016年高考四川理数】同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是.【答案】【解析】同时抛掷两枚质地均匀的硬币,可能的结果有(正正),(正反),(反正),(反反),所以在1次试验中成功次数的取值为,其中在1次试验中成功的概率为,所以在2次试验中成功...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学 专题12.2 离散型随机变量的分布列、均值与方差试题 理-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部