一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:如:若,;问:到的映射有个,到的映射有个;到的函数有个,若,则到的一一映射有个。函数的图象与直线交点的个数为个。二、函数的三要素:,,。相同函数的判断方法:①;②(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①,则;②则;③,则;⑤含参问题的定义域要分类讨论;⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为,扇形面积为,则;定义域为。(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;单调性法:函数为单调函数,可根据函数的单调性求值域。数形结合:根据函数的几何图形,利用数型结合的方法来求值域。三、函数的性质:函数的单调性、奇偶性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:定义法(作差比较和作商比较)复合函数法和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。应用:求函数值和某个区间上的函数解析式。四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。平移变换y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;如:的图象如图,作出下列函数图象:(1);(2);(3);(4);用心爱心专心xOyy=f(x)(2,0)(0,-1)(5);(6);(7);(8);五、常用的初等函数:(1)一元一次函数:,当时,是增函数;当时,是减函数;(2)一元二次函数:一般式:;对称轴方程是;顶点为;两点式:;对称轴方程是;与轴的交点为;顶点式:;对称轴方程是;顶点为;①一元二次函数的单调性:当时:为增函数;为减函数;当时:为增函数;为减函数;②二次函数求最值问题:首先要采用配方法,化为的形式,Ⅰ、若顶点的横坐标在给定的区间上,则时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;Ⅱ、若顶点的横坐标不在给定的区间上,则时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;有三个类型题型:(1)顶点固定,区间也固定。如:选(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。选(3)顶点固定,区间变动,这时要讨论区间中的参数.六、的图象:定义域:;值域:;奇偶性:;单调性:七、补充内容:若奇函数在区间上是递增函数,则在区间上也是递增函数.若偶函数在区间上是递增函数,则在区间上是递减函数.函数的图象是把函数的图象沿x轴向左平移a个单位得到的;函数+a的图象是把函数助图象沿y轴向上平移a个单位得到的;反思1.求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗?2.判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个条件了吗?3.根据定义证明函数的单调性时,规范格式是什么?(取值,作差,判正负.)4你知道函数的单调区间吗?(该函数在或上单调递增;在或上单调递减)这可是一个应用广泛的函数!用心爱心专心5.“实系数一元二次方程有实数解”转化为“”,你是否注意到必须;当a=0时,“方程有解”不能转化为.若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?用心爱心专心