河南省信阳市2015届高考数学一调试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={x∈N|x≤6},A={1,3,5},B={4,5,6},则(∁UA)∩B等于()A.{0,2}B.{5}C.{1,3}D.{4,6}2.幂函数y=f(x)的图象经过点(4,),则f()的值为()A.1B.2C.3D.43.下列命题中,真命题是()A.∀x∈R,x2≥xB.命题“若x=1,则x2=1”的逆命题C.∃x∈R,x2≥xD.命题“若x≠y,则sinx≠siny”的逆否命题4.“a=3”是“函数f(x)=x2﹣2ax+2在区间[3,+∞)内单调递增”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是()A.B.C.y=x3D.y=tanx6.已知函数f(x)=()x﹣x,那么在下列区间中含有函数f(x)零点的是()A.(,1)B.(,)C.(,)D.(0,)7.设sin(+θ)=,则sin2θ等于()A.﹣B.C.D.8.为了得到函数y=sin2x+cos2x的图象,只需把函数y=sin2x﹣cos2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.函数y=Asin(ωx+φ)+k(A>0,ω>0,|φ|≤,x∈R)的部分图象如图所示,则该函数表达式为()1A.y=2sin(x﹣)+1B.y=2sin(x﹣)C.y=2sin(x+)+1D.y=2sin(x+)+110.设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}11.已知f(x)=ln(x2+1),g(x)=()x﹣m,若∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是()A.[,+∞)B.(﹣∞,]C.[,+∞)D.(﹣∞,﹣]12.已知R上可导函数f(x)的图象如图所示,则不等式(x2﹣2x﹣3)f′(x)>0的解集为()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣∞,﹣2)∪(1,2)C.(﹣∞,﹣1)∪(﹣1,0)∪(2,+∞)D.(﹣∞,﹣1)∪(﹣1,1)∪(3,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.函数的定义域是__________.14.若cosα=﹣,且角α的终边经过点(x,2),则P点的横坐标x是__________.15.设函数f(x)=,则满足f(x)=的x值为__________.216.某舰艇在A处测得遇险渔船在北偏东45°距离为10海里的C处,此时的值,该渔船演北偏东105°方向,一每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是__________分钟.三、解答题:本大题6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知函数f(x)=2x2﹣2ax+b,当x=﹣1时,f(x)取最小值﹣8,记集合A={x|f(x)>0},B={x||x﹣t|≤1}(Ⅰ)当t=1时,求(∁RA)∪B;(Ⅱ)设命题P:A∩B≠∅,若¬P为真命题,求实数t的取值范围.18.已知函数f(x)=log2(2x+1)(Ⅰ)求证:函数f(x)在(﹣∞,+∞)内单调递增;(Ⅱ)若g(x)=log2(2x﹣1)(x>0),且关于x的方程g(x)=m+f(x)在[1,2]上有解,求m的取值范围.19.已知函数.(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)若,求函数f(x)的值域.20.已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC=.(Ⅰ)求A;(Ⅱ)若a=2,b+c=4,求△ABC的面积.21.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.(Ⅰ)要使花坛AMPN的面积大于32平方米,求AN长的取值范围;(Ⅱ)若AN∈[3,4)(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积.22.已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)若函数f(x)没有零点,求a的取值范围.3河南省信阳市2015届高考数学一调试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={x∈N|x≤6},A={1,3,5},B={4,5,6},则(∁UA)∩B等于()A.{0,...